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PREFACE 

A characteristic feature of modern industrial and production processes 
is that their qualitative and quantitative parameters are a function of many 
interdependent and interconnected variables.    Some of the process variables 
must be maintained constant or made to vary in a manner prescribed 
by the characteristic features of the given process.    These are the so-called 
controlled   variables   of the process.    Their number is not fixed, 
and some fairly complex systems may have but a single controlled variable. 
Such single-variable systems are treated very extensively in the current 
literature on automatic control theory. 

The present book,  on the other hand,  is devoted to automatic control 
systems with many controlled variables (at least more than one). 

Examples abound of systems with numerous controlled variables, 
and the modern tendency is toward ever greater utilization of systems and 
plants of this kind.    We call them multivariable control systems (MCS). * 

The simplest examples of multivariable plants are provided by complex 
industrial equipment.    Boilers,  synchronous electrical machines,  etc., 
are typical examples.    In these machines some variables,  e.g.,  steam' 
pressure,  steam temperature, voltage, a.c. frequency, are maintained 
at a certain setting, although the total number of variables (the number 
of generalized degrees of freedom) is much higher. 

The development of multivariable control systems led to a new problem: 
how to control each of the variables if they are interdependent,  so that a 
change in one of the variables alters all the others ?   The solution was 
provided by I.N. Voznesenskii, who can be regarded as the originator of 
the theory of autonomous, noninteracting control systems: the basic idea 
was to design a control system with independent variables, where variation 
of one variable did not change the other variables.    This approach proved 
to be quite useful for a number of controlled objects and it is currently the 
only practicable solution of the problem in some cases. 

However, this solution is inapplicable to most multivariable objects, 
and in certain cases it is even meaningless.    There is a by-now classical 
illustration of this point.    In continuous cold or hot rolling of sheet metal, 
the controlled variables include the drive speeds,  roll gaps, etc., but the' 
quality and mainly the geometry of the finished product do not depend on 
each controlled variable separately, but on their combination,  so that 
control of each individual variable ignoring all the others at any given 
time is a meaningless procedure. 

Therefore,  in addition to controlled objects which technologically can 
be treated as noninteracting, there are cases of inherently interacting 
variables, which cannot be adjusted individually.    In the latter class we 

A more rigorous definition of a multivariable control system is given in the following. 



put all the plants or processes where the generalized quality index of the 
finished product depends on all the controlled variables simultaneously. 
It is shown in this book that the design of noninteracting systems is not 
always the best policy, not even for controlled objects where this is 
technically feasible.   We must emphasize, however, that there are very 
numerous cases when noninteraction is simply unfeasible. 

These two classes, however,  are not separated by a Chinese Wall, 
as everything depends on the problem being considered and the particular 
conditions.    For example,  a synchronous electric machine as such falls 
in the first category, whereas the same machine as part of a power 
transmission system is an excellent example of a component in a system 
with inherently interacting variables. 

The basic problem of the present book is to elucidate the fundamental 
properties of multivariable control systems.    Whenever possible, I tried 
to assess and evaluate the current methods and techniques for the synthesis 
and analysis of control systems and to describe some of my original results. 

The book comprises an introduction and eight chapters.    The introduction 
outlines the scope of the treatment and defines the fundamental concepts. 

Chapter One is devoted to mathematical description of some typical 
mutlivariable objects and control systems.    The choice of the examples 
is largely determined by my own field of interest.    However,  it seems to 
me that the examples of Chapter One are of general significance as being 
representative of the principal branches of industry — metallurgy, power 
engineering, oil engineering and oil refining.    The derivation of the 
equation of the rectifying column and the analysis of its behavior as a 
control system were carried out by Yu.N.  Mikhailov under my supervision. 

Chapter Two is devoted to the derivation of the equations of multivariable 
control systems consisting of single-variable subsystems that are made up 
of basic (necessary but not sufficient) elements.    It will become clear from 
what follows that this is not a fundamental restriction,  since the technique 
used in the derivation of the equations and the methods employed in their 
investigation are applicable to the more general cases too.    The principal 
structural properties of this class of systems are elucidated for both the 
steady-state and transient conditions.    In particular, the matrix of error 
coefficients is determined for the case of plant and control coupling of the 
individual variables. 

Chapters Three and Four investigate the general structural properties 
of multivariable control systems.    The main emphasis is on the class of 
structures with infinite-gain stability in each, subsystem; in these structures 
every single-variable subsystem is clearly a multiloop configuration. 

Multivariable combined-control systems are treated separately in 
Chapter Five.   Considerable space is devoted,  in particular,  to systems 
where simultaneous deviation and load control is applied to structures of 
infinite-gain stability. 

Chapter Six deals with the problems of noninteraction and invariance. 
The presentation begins with a discussion of the results of Voznesenskii 
(USSR) and of Boksenbom and Hood (USA).    We then proceed with the 
invariance problem and describe the fundamental results of Kulebakin 
and Petrov.   Next, noninteraction and invariance are treated as structural 
properties of a certain class of systems.    Realizability and coarseness 
(in the sense of A.A. Andronov), various cases of noise rejection, etc., 
are considered in great detail. 



Chapter Seven is concerned with the design of fixed-structure systems 
which are equivalent in their properties to self-adjusting or adaptive 
control systems.    The discussion is based on structures with infinite- 
gain stability, which have been treated in considerable detail in the 
preceding chapters.    The structural aspect of the sensitivity problem is 
dealt with,  and examples of systems with variable coefficients are 
examined.    The theoretical results are applied to a practical control 
problem accommodating a large variation of the plant gain. 

Chapter Eight is concerned with the variational aspects of multivariable 
control.    Optimization considerations suggest that the multivariable control 
systems should be divided into two classes: systems where the general 
optimum is attained by optimizing each single-variable subsystem,  ignoring 
the interaction with other controlled variables (in this class optimization 
is synonimous to noninteraction) and systems with a generalized quality 
index which depends simultaneously on all the controlled variables.   A 
particular example is considered where the control specifications are 
given as a function of time.    Here of particular interest are plants without 
memory, to which linear programming can be successfully applied.    This 
range of problems was studied jointly by me and E.S.  Silimzhanov.    The 
results of Sarachik and Kranc, also discussed in Chapter Eight,  are of 
considerable interest for the determination of the control vector as a 
function of time for multivariable objects.   Classical variational techniques 
and dynamic programming are applied to determine the controller equations 
in a multivariable system.    It is remarkable that the solution of the 
variational problem in an open domain yields structures with an infinite 
gain parameter.    On the whole the treatment of this chapter can be regarded 
as only the first step toward a comprehensive solution of the problem of 
synthesis of multivariable control systems. 

It is my pleasant duty to thank Prof. A.A.  Fel'dbaum who reviewed 
the book and offered a number of highly valuable comments which greatly 
contributed to the finished product. 

M. Meerov 



INTRODUCTION 

In multivariable objects or plants the number of controlled variables is 
greater than one and in general these variables are interconnected in such 
a way that a change in any of the controlled variables alters all the other 
variables (this refers to steady-state conditions,  as well as to transients). 

If the controlled variables are regarded as the plant outputs, we may 
say that a multivariable plant has more than one output, and a change in 
any one of its outputs leads to a change in all the outputs. 

If a closed control loop is hooked up for each of the controlled variables, 
we end up with a multivariable control system. 

Multivariable   control   systems   (MCS)  are thus defined 
in general as  control   systems   with   several   controlled 
variables   which   are   coupled   in   such   a   way  that   a   change 
in   any   one   variable   leads   to   a   change   in   all   the   vari- 
able s,  assuming of course that no special decoupling device is provided. 

Typical multivariable objects are a boiler, where the controlled 
variables are temperature,  steam pressure,  and water level; a turbojet 
engine,  where both the revolutions and the gas temperature at the turbine 
outlet are controlled; a synchronous generator, where the voltage and 
the speed are controlled (if the synchronous generator is connected in 
parallel with other machines, the active and reactive power output are 
additional controlled variables). 

In the above examples the interrelationship between the individual 
variables is due to natural (internal) properties of the controlled object. 
Another extensive group of multivariable control systems arises in 
connection with automation of production processes.    The interaction 
between the individual controlled variables in these systems is generally 
due to technical and production factors.   An excellent example is the 
feedback control system for the electric drives in hot and cold continuous 
rolling mills. 

Figure 1-1 is a block diagram of a system controlling the sheet thickness 
in continuous cold rolling.    Thickness gages (TG) are provided after each 

«T0 
FIGURE 1-1.   Block diagram of strip gage control in a con- 
tinuous rolling mill. 



stand.    The sheet thickness is regulated by adjusting the roll gap and 
maintaining constant rolling stress.    The gage output signal is delivered 
to the servosystem controlling the pressing screws.    The rolling stress, 
on the other hand,  is maintained constant by adjusting the speed ratio of 
the main drives and the coiler speed.    These two groups of control systems, 
however,  are interconnected through the rolled metal strip, and thus 
constitute a complex multivariable system. 

The situation is considerably more complicated in hot rolling.    Here 
the thickness gage can be installed only after the last stand; moreover, 
it is desirable to control the strip thickness at minimum permissible 
tension.    In hot rolling the strip thickness is highly sensitive to tension. 
Variation of strip temperature and the heating of rolls also have a con- 
siderable influence; there is always a certain contribution from other 
entirely random factors as well.    The object of control is to maintain the 
strip thickness 6 constant.    The gage 6 depends on the position of the 
pressing screws, the speed ratio of the main drives, temperature,  and 
other random factors: 

ö = /[/v (0. Fm.«t-iV), 6, ß(*,)]. (1-1) 

Here Ff, (t) is the control function of the pressing screws in the stands, 
Fni. m-i(0 is the control function of the main drives, 0 is the temperature, 
$(xt) is a disturbance dependent on random factors. 

We see from (1-1) that the controlled variable depends on the determinate 
functions F?, (t),  Fnl, „,_, (f), and a random function ß (xt).    The functions Fpr (t) 
and Fni, n;-i(0 are interrelated, and they jointly determine the geometry and, 
in particular, the thickness of the rolled strip.    The control problem here 
is to choose the functions F?, (t) and F„,-, „,-_, (t) and the function / for given 6 
and known probability distribution of ß(x4)so that the thickness ö is between 
predetermined limits. 

In rolling mills the strip tension control system and the roll positioning 
system are coupled through the metal strip.    The system for primary 
refining and sulfur stabilization of crude oil (dehydration and desalination) 
comes under the same category; the controlled variables here are tempera- 
ture, flow rate, and liquid level,  as well as the quantity of the chemical 
reagent which is fed separately into the system.    The control function 
should be so chosen that oil of desired quality is obtained at a minimum cost. 

There are many other examples from modern industry and technology 
where the desired quality of the finished product is ensured by simultane- ' 
ously controlling a number of variables.    The controlled variables are 
generally coupled,  so that a change in some of the variables leads to a 
change in all the variables.    We can safely say that the multivariable 
control theory provides a theoretical foundation to large-scale compre- 
hensive automation of industrial and technological processes. 

The third group of multivariable control systems comprises the so- 
called mult id im en s ional   servosystem s .    These are derived from 
ordinary servosystems by imposing coupling on the measuring elements. 
In this case we speak of the coupling of the component servos through 
the measuring devices or control coupling.    Figure 1-2 shows a two- 
dimensional servosystem,  and Figure 1-3 a three-dimensional servo- 
system.    This combination of individual servos into a single multidimensional 



system may be due to the particular requirements of the technological 
process,  e.g., a copying machine.    In some cases it also helps to improve 
the quality of automatic control. 
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FIGURE 1-2.   A two-dimensional 
servosystem. 
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FIGURE 1-3.   A three-dimensional 
servosystem. 

A common property of all multivariable control systems is that they 
have several controlled variables (more than one).   A separate subsystem 
is designed for each controlled variable.    The number of controllers is 
naturally at least equal to the number of controlled variables.    In multi- 
variable plants the number of inputs is not less than the number of outputs. 
It will be clear from the following examples that the number of controllers 
(active inputs) is often greater than the number of controlled variables. 
Moreover, the controlled object is subjected to external disturbances 
which may vary arbitrarily (and are often described by random functions). 
External disturbances,  or loads,  can be applied to some of the controlled 
variables or to all of them.   A multivariable control system thus contains 
all the component elements which are normally encountered in systems 
with one controlled variable. 

However, the presence of several controlled variables constitutes more 
than a simple quantitative difference between multivariable and single- 
variable systems.    There are some special problems which are character- 
istic of multivariable control systems,  and it would be incorrect to assume 
that the multivariable control theory is a simple generalization of the 
control theory for systems with a single variable. 

For example, let us consider the problem of constraints imposed on 
the system.    In single-variable systems these constraints are mainly 
determined by the nonlinearity of the characteristics,  saturation phenomena, 
etc., whereas in multivariable systems the constraints maybe connected 
with the peculiar character of the controlled variables.    The presence of 
several coupled controlled variables is a novel aspect in stability analysis 
and quality considerations, not encountered in single-variable systems. 
The study of multivariable systems also gives rise to certain topics 
without counterpart in conventional control theory,  such as (a) the problem 
of noninteraction, (b) the problem of maintaining a given relationship 



between the controlled variables,  and (c) the problem of interacting control, 
which minimizes (or maximizes) a certain quantity (e.g., the quality of the 
finished product in a technological process). 

Structure synthesis,  which has emerged as one of the basic problems 
in single-variable control systems,  acquires special significance in 
multivariable control.    It will be seen from the various sections of this 
book that the coupling between the individual controlled variables essentially 
depends on the structure of the multivariable system,  and noninteraction 
may be derived as a structural property of a certain class of structures. 
The contribution from inherently nonlinear characteristics of the various 
elements and their influence on the coupling between the variables and, 
in particular,  on the noninteraction aspects deserve special consideration. 
Finally, the optimum and extremum problems are of special interest for 
multivariable control systems.    It will be shown that for a certain class 
of structures noninteraction is equivalent to optimizing the system with 
respect to some quality criterion. 

The realizability of the invariance conditions also has some unique 
aspects for multivariable control systems.    The invariance conditions 
of multivariable control are realizable only in combined-control systems, 
where control by deviation (the Watt —Polzunov principle) is implemented 
in conjunction with load control.    Fairly extensive space is allotted in this 
book to the treatment of combined-action control systems. 

We have already noted that the quality of a multivariable control system 
is often determined by a generalized criterion.    The control functions for 

each variable should be so chosen as 
to extremize the generalized quality 
index.    In some cases, linear pro- 
gramming provides an effective tool 
for the development of multivariable 
control systems of this kind.    In 
Chapter Eight linear programming is 
applied to find the optimum operating 
conditions of oil wells.    We seek to 
maximize the oil production under 
given constraints on equipment and 
operating conditions.    Some economic 
index (e.g.,  production costs) can be 
adopted as the generalized criterion 
in this case. 

The multivariable control theory 
is very intimately linked with the problem of efficient design of large 
systems.    However complex the system,  it always has a certain finite 
number of main outputs, although there may be any number of factors 
actively influencing these outputs.    Moreover, the statistical indices of 
the process may be adopted as the generalized outputs.    The significant 
point is that even in these complex systems we can always detect the main 
outputs, which are interconnected in a certain way and acted upon by 
additional random disturbances.    On the whole,  a complex multivariable 
control system can be represented by some generalized block diagram, 
like the one shown in Figure 1-4. 

y refi 

Control 

1111 
Plant 

Feedback 

FIGURE 1-4.    A generalized block diagram 
of a multivariable system. 



And now some history.    The first serious contributions in multivariable 
control theory were published in the Soviet Union in 1938 /10, 11/.    These 
initial efforts were entirely concerned with the problem of noninteraction. 
Voznesenskii /ll/ considered the feasibility of providing separate con- 
trollers for the individual variables and setting up such coupling that a 
change in one of the variables would not affect the other variables.    This 
noninteraction problem, which Voznesenskii called the problem of 
autonomous control,  is solved in /ll/ for the case of a plant where 
each variable is described by a first-order differential equation; ideal 
(inertialess) controllers are assumed.    The followers of Voznesenskii 
have extended the noninteraction conditions to more complex cases 
/5, 6, 18, 52, 54, 55, 59/.    It should be emphasized that the noninteraction 
problem is figured as the main topic in most studies in the field. 

Boksenbom and Hood were the pioneers of multivariable control theory 
in the USA.    Their first paper /77/ published in 1950 deals with various 
aspects of the noninteraction problem,  previously treated by Voznesenskii. 
The application of matrix algebra enabled the authors to essentially simplify 
the expressions for noninteraction conditions,  without restricting the order 
of the differential equation that describes each of the controlled variable. 
The studies of Freeman /78, 79/, Kavanagh /81, 82/,  and others concerned 
with more elaborate aspects of noninteracting systems were a direct out- 
growth of the fundamental study of Boksenbom and Hood.    Kavanagh 
considered not only noninteraction, but also some other quality indices. 
Golomb and Usdin /80/ developed the theory of multivariable servosystems; 
they introduced the matrix of error coefficients and derived an explicit 
expression of this matrix for multidimensional servosystems. 

Sarachik /21/ considered some properties of nonlinear multidimensional 
servosystems.    He analyzed in considerable detail the properties of a 
two-dimensional servosystem and described methods of construction that 
satisfied his optimality test.    Multivariable control is also the subject 
of /15, 83, 84, 85/.    The book by M. Mesarovic deserves special mention /85/. 
This was essentially the first book in multivariable control theory; moreover, 
Mesarovic was the first to consider multivariable control as an independent 
problem, and not as an outgrowth of the theory of single-variable systems. 
He advanced a number of highly original ideas concerning the applicability 
of variational techniques to the design of multivariable systems. 

Among the more recent contributions to multivariable control theory 
we should mention the publications of A.A. Krasovskii /22, 23, 24/, 
V.T. Morozovskii /48, 49, 50/, V.A. Venikov /9/,  L.V.  Tsukernik/69, 70/, 
G.V.  Mikhnevich /46, 47/, and others.    Numerous papers on multivariable 
control systems have been lately stimulated by research in nuclear-reactor 
control /12, 45/.    On the whole, however, the multivariable control theory 
is stitl at the very first stages of its development. 

In writing this book I did not try to cover the entire range of problems 
treated in multivariable control systems.    My principal aim was to provide 
the reader with an introduction to the modern tasks and problems of 
multivariable control theory and to draw the attention of the specialist 
to some of the important problems that deserve further study. 



Chapter One 

EXAMPLES OF MULTIVARIABLE CONTROL SYSTEMS 

§1.1.   AUTOMATIC GAGE CONTROL IN 
CONTINUOUS ROLLING 

A functional diagram of a continuous cold-rolling mill is shown in 
Figure 1.1.    The same mill, but without a coiler,  is used in continuous 
hot rolling. 

jp   <fo_ <m   <m   <m 
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FIGURE 1.1.   Schematic of a continuous rolling mill. 

The roll mill stands are placed sequentially one after the other. 
Pressing screws on each stand alter the position of the top roll and thus 
adjust the clearance between the working rolls.    The strip gage can be 
altered by changing the roll gap,  as well as by raising the rolling tension 
(up to the yield point).    Both these control techniques can be applied 
simultaneously.    In automatic gage control,  the pressing screws are 
regulated by a roll positioning system,  whereas the tensile stress is 
adjusted by appropriately modifying the main drive velocities. 

It is fairly obvious, however, that these two groups of control 
systems are interconnected through the rolled strip.    A particularly 
pronounced interrelationship is observed in hot rolling mills,  a fact 
which follows from various experimental data.    The effect of stress on 

strip gage is evident from the bulging 
of the head and the tail of the piece, 
where the rolling tension is nil. 

Figure 1.2 is a block diagram of 
an automatic roll-gap control system 
for one of the mill stands.    Similar 
systems are provided in each stand. 
Hydraulic dynamometers under the rolls 
act as thickness gages, and looper gears 
between the mill stands measure the 
stresses (not shown in Figure 1.2).    For 
the sake of generality it is assumed that 
all the mill stands are equipped with hydraulic 
dynamometers and that stress measure- 
ments are taken between every two stands. 

«, H 
FIGURE 1.2.   Block diagram of strip 
gage control in one of the mill stands. 



Let us consider the general control relationships for a rolling mill. 
The equation for the entire mill can be obtained by writing the equations 
for each stand with appropriate front and back tensions. * 

Consider the equation of the t'-th stand.    The physical properties of 
continuous rolling are described by the following relations: 

v, = yMi+bi(fi.i+i-fi. 1-1)]. (1.2) 
t 

M,,t+i = c,f(^v'lil+l-^,)dt, (1.3) 
0 

,vhcrc ,._*o<(i + s„)    - .     EQt where y—       ^ c, — 7-7^-. 

In these equations 
Msl = the reduced static torque in tension rolling, 
M'H = the static torque in tension-free rolling, 

nt = the velocity of the motor, 
fi, t+i = interstand tension, 

V'i = strip velocity on entering the stand, 
V,- = strip velocity on leaving the stand, 

£>, = roll diameter, 
j = motor-to-roll transmission ratio, 

H, = strip gage after the t-th stand, 
Q, = strip cross section, 
E  = modulus of elasticity of the rolled metal, 

h,i+i = interstand distance, 
S0   = forward creep in tension-free rolling, 
bt   = forward-creep coefficient. 
Under steady-state conditions the strip enters the i-th stand at the 

same velocity that it leaves the (/- l)-th stand. 
From the constancy of the per-second volume in rolling we can find 

a dependence of the strip tension on the main drive velocities of the 
nearby stands.   Assuming constant strip width, we find 

VW/i-^fliV,. (1.4) 

Inserting for V,- and Vt-i their expressions from (1.2) and solving (1.4) for nu 

we find 
„ _ v<-i"<-i"<-i[1 + h-i (ft-,, 1 -fi-x (_,)] ,.  .. 

The differential equation of motion of the electric drive can be written 
in the form 

■W 4$- =-M* »--Mi- °=Mla,-{M„ — M'„). (1.6) 

The motor torque M{ m is found from the relation 

M,a = Ctfl>,fu. (1.7) 

•     A rolling mill as a multivariable plant is considered by N. P. Druzhinin /13/ and A.A. Fel'dbaum /66/ . 



For a Ward—Leonard machine with constant exciting current we find 

Ul = Ll.^ + RtJl. + C.fl>lnl, (1.8) 

whence 

Mln = Ctt<l>l
u'-c'fi>"". (1.9) 
L'a It ~^~ ^l' 

Substituting (1.9) in (1.6) we have 

375   dt — L'iwi-     ä——- mi> (1.10) 
' a It "•" "'a 

where 

mi = Msi — M',i. 

The resistance torque depends on a number of factors.    From the theory 
of plastic deformation /13/ the pressure on the rolls is given by 

P = P[R„ ®„ V„ Fllt Fn, //,„ Hn, K,\, (1.11) 

where P is a nonlinear function of the relevant parameters, Ri  the effective 
roll radius, //,-, the ingoing gage for the i-th roll, Ha the outgoing gage, 
Fn the back tension on the strip, Fi2 the front tension,   <Dj the contact arc, 
Hi the friction coefficient. 

The rolling torque is a function of the same variables and roll radius. 
It is expressed by another nonlinear function, thus: 

M, = M[R„ /?;, a»£, n„ Fn, Fn, Hn, Ha, AT,]. (1.12) 

For small increments of the variables in (1.11) and (1.12),  assuming 
R', R, O, H,  and K to be constant, we may write 

dP=-mtdffn + WJ;^ + ^^+-^äFl2 (1.13) 
and 

dM^^-äHn + 4^äHl2 + ^.äFn + ^-äFl2. (1.14) 

Using lower-case letters for the small increments and constant 
coefficients for the partial derivatives,  we write 

AP = Knhn + *„*„+ K«fn + K,U (1.15) 
Am = K,Jin + KKhn + K„fn + K,Jlt, (1.16) 

where 

w  — dp'       is  —  dpi       IS  — dpt       u-        dpi 

„   _ dM,        j.   _  dMj        „   _ dMj       j, dMt A" — äff,, '    A'6— Sff^'    A« — sp^>    «ii — W^- 



Equations similar to (1.15) and (1.16) can be derived for all the mill 
stands.    In addition to the individual stand equations,  there are also 
coupling equations which describe the continuous operation of the entire mill. 

We use the following notation: primed quantities describe the state of 
the ingoing strip,  lower-case letters denote small increments, and absolute 
values are represented by capital letters subscripted with a zero. 

The increment of the loading torque in the i-th stand is written from 
(1.16) as 

«w = tf«*|-*ia*i- Knfi + KJi-v (1.17) 

the continuity equation is 

(tfo + ziO(//;o + A;) = (l/ra+ »/)(//«, +A,). (us) 

The change in strip tension due to elastic deformation is written as 

^ = 
C
I(^+.-«I). (1.19) 

where d is a constant. 
The velocity of the ingoing strip is higher than the linear velocity V, of 

the roll surface.    It is given by the relation 

K=V,(l+5')=Vr(l+S0+5)=Vr(l+50)(l+n|Sj)1 (1.20) 

where 5 is the forward creep,  dependent on strip tension,  S0 the forward 
creep in tension-free rolling.    In the linear approximation the forward 
creep as a function of tension is given by the relation 

S = b(l+S0)AF. (1.21) 

From (1.20) and (1.21) we have 

l/=V/r(l+50)(l + 60AF) = ^^(l+50)[l+ft(^-^_1)]. (1.22) 

Linearizing, 

Vi = A», + £(f,-/,_,), d.23) 

where 

A = ^+M     and     B = AN, 

A section of the rolled strip emerging from the given stand reaches the 
next stand after a certain time lag 

X' = TJ- (1.24) 

where /,- is the interstand distance, Vt the strip velocity.    Thus, 

**W = *i-i('—*i). (1.25) 



and making use of (1.2 5) we write for (1.17) 

ntu^Kufii-iV-id-Kotii + KiJi-i-Knf,. (1.26) 

Let 

GO*        R&       |      m Lz  rp R          j» 1        rs 
375   CtCeV

2~   "     Ra~   "     CtCe<D2— "•'     C«U _'v,,,' 

We write the following two equations in Laplace transforms: 

lT,,p(l + Tt.p)+\]nl(p) = 
=KiUti iP)-K, (1 + T, j) Kl5e-rt% (p) + K, (1 + 7",,/>) *»*, Ü»)- 

-/f,(l + 7'/.i»)/fiBfi-i(P) + fia + 7'i.P)fi7fi(/') (1-27) 

and 

pU (/>)=<VU+i (P)-C^ (P)+C,BJM (p)+ClBlf1_1 (p). (1.28) 

Substituting ft(p) from (1.28) in (1.27),  we find 

[TtipHl + T,lp)]ni(p) = 

= KlapUll-KlQ + TuP)Klipe-XlPhl(p) + 
+KlP (1 + Tup)K,A (P)-Kt (p) (1 + T, ,p) ICJ,-! (p) + 
+K,Q + T, .P) KnC^n,^ (p)-K, (1 + T,./») K, frAfl, (p) + 

+K,(l + Tup)ClBlK„fl+l(p)+Kl(l + Tup)KaC,BJl_l(p). (1.29) 

After simple manipulations we have 

[rt tPH\ + r,./»+/>+AT^CA (i + Tt./»)]«, (p)= 
=*i »/>*/, m (P)+AT, [*«/» (1 + Tup)-Ki5(l+Tup)pe-V]ht(p)+ 

+ KiKrfiA (1 + Tt „p) *<+I (p) + KfififaU+t (p) + 
+ KlH\+T„p)(KtfilB,-pKd]f,-l(p). (1.30) 

As a final step in the derivation of the equation of main drive control, 
we have to choose an appropriate measuring device and to relate the 
main drive velocities to strip tension.    Loopers are adequate measuring 
devices for continuous hot-rolling mills.    In cold-rolling mills the tension 
can be found from motor load.    Without going into this technical question, 
we assume that a suitable device is available for tension measurements. 
Then: 

(a) tension between the (« + l)-th and r'-th stands 

fM(P) = KiWä{p)\n,a(p)-nl+,(p)l (1.31) 

(b) tension between the (/ - l)-th and j-th stands 

f,-i(p) = KiWi(p){na<(p)-ni_1{p)]. (1.32) 

The motor voltage Um (p) receives feedback from strip tension measure- 
ments.    Let Wd(p)be the transfer function of the measuring device and 
K,Wg(p) the transfer function of the generator,  the exciter,  and the amplifier 
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(if any); then 

U™ (P) = Wt (p) W%(p) K, K,, {p) _ n, (p)). (1.33) 

Substituting (1.31),  (1.32),  and (1.33) in (1.30), we find 

\T,lp(\ + Tup)+p+Kl(\ + TuP)KtfilAl+ 
+ KlnpWt (p) W% (p) K.\ n, (p) - [fCKnCA (l + Tup)- 

-KfißtKnKaQ + T,.p) W<1(P)]11+1(P) + 
+ K, [(1 + TlmP) {finCß, - Kltp)] Kä Wd, (p)«,., (p) + 
+ Kl[Ki6p(\ + Tlap)~Kl5(l + Tiap)pe-x'"]hi(p) = 

= «^, (p) \KlmpWt (p)K„ + 2/<i] «,„,(/>)• (1.34) 

We see from equation (1.34) that the process of control in the i-th 
subsystem, where the controlled variable is nt,  is influenced by the 
controlled variables of subsystems  i- 1 and /+ 1.    Each of these variables 
n,_, and ni+i has its own closed-loop control system.    The various mill stands 
are described by a set of equations analogous to (1.34) with i= 1, 2, . . . , 6. 

One of the components of equation (1.34) - the term A,- deserves special 
consideration.    If the strip gage is controlled by tension alone,  A, is the 
external disturbance or load.    In some instances of cold rolling ht may 
therefore be considered as a load on the tension control system, whereby 
hi is maintained between certain predetermined limits.    In the general 
case,  when the strip gage is controlled by simultaneously adjusting the 
tension and the reduction,  special control subsystems are provided for hu 

The number of these subsystems is equal to the number of stands with 
reduction control.    In cold rolling mills reduction is normally controlled 
in some three or four stands,  and equations (1.34) are then supplemented 
by reduction control equations.    If reduction control is instituted in only 
part of the stands, h, remain in some of the equations in (1.34) as loads. 

In continuous hot-rolling mills the gage is best regulated by appropriate 
reduction control; the tension should of course be maintained constant. 
Minimum tension is required, but it must be sufficient for strip centering. 
The process of gage control for a hot-rolled sheet can be investigated 
using equations (1.27),  (1.28); these equations are solved for tension, 
which is presumably maintained constant. 

Let us consider the equations that describe the controlled positioning 
of the pressing screws.    The corresponding equations are equally applicable 
to both cold and hot rolling mills. 

The screw positioning system has an actuator,  a Ward -Leonard d. c. 
engine,  say.    Figure 1.2 is a schematic diagram of the roll-gap control 
system.    The input is the reference gap,value   //ref.    The equation of the 
measuring device is 

*/« t t=Wä,i(p)[Hi,d-Hi\. (1.35) 

The output of the measuring device is delivered to an amplifier and 
then to a generator.    The equation of the amplifier and the generator 
is written as 

fm, = Ar.,,irg,(„)youi  d f. (i.36) 
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Now consider how the motor runs when the strip undergoes reduction. 
The torque equation is 

GD2, 
^.pn = Ct%ll-MK„ (1.37) 

but the pressure on the rolls and the corresponding resistance torque 
sensed by the motor are given by 

M..i=P,rlcq, (1.38) 

where />, is defined by (1.11);   rUq is the equivalent arm which, together 
with the force P(,  produces the resistance torque on the motor. 

By analogy with (1.14),  we write 

AM,ri^,Hn + ^AH„ + ^AFn+^,Fi2, (i.39) 

and equation (1.37) takes the form 

— nn — r     <D     Um'~Cerl<S>,ln,t        ... 75  Pi-CttiOrl      Uip+Rtii AM,,, 
GDI 

375 

or __2 

?^-D*K  H-C   <S>   t/""-c./'yri 375   P K- M ~ C. /»,      L,„p+/iul  

- Km t A//„ - Km A//i2 - A",, AF„ - K12 Wi2. 

After simple manipulations, making use of (1.36) and (1.35),  we find 

\Tt, lPV + r„lp)pKrt+KrlP+KmtI<triWg!iip) irdr(0»)I//((^)= 

= KmlKallWsi(p)W„i(p)Hrc!(p)-a,t(l + l,l p)lKn,*Hu + 
+ KM A//2 + Ha AFn + Km AFn\. (1.40) 

The screw positioning equations for the other stands are obtained by 
assigning an appropriate value to the subscript i.    For a three-stand 
system,   i= 1, 2, 3. 

In equation (1.40), ff, is in a sense //,_, and //2=//,+1.     AF, and AF2 are 
the coupling terms interconnecting equations (1.40) for i = 1, 2   3 with 
equations (1.34) for (= 1, 2, 3, 4, 5, 6. 

We have thus obtained two sets of equations: one describing the positioning 
of pressing screws and the other main drive control.   Jointly these equations 
describe,  in the linear approximation, the dynamics of gage control by 
simultaneous regulation of roll gap and rolling tension. 

§ 1.2.    A COMPLEX POWER SYSTEM AS A MULTI- 
VARIABLE CONTROLLED OBJECT 

By a complex power system we mean a quite general configuration of 
power generating stations in a grid of arbitrary load.    Each power station 
individually is a complex system comprising a few or even a few dozen 
powerful synchronous generators and other equipment.    For the sake of 
simplicity each station is replaced in our analysis by an equivalent 
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synchronous generator and an equivalent prime mover.    Numerous studies 
/46, 47, 69, 70, etc./ have shown that this substitution is fully permissible 
in many practically significant cases.    It is further assumed that each 
equivalent generator is excitation-controlled and the equivalent prime 
mover (a steam or hydraulic turbine) is provided with speed control. 
Furthermore, all the machines except the first have secondary frequency 
control.    Figure 1.3 is a block diagram of one element in a complex 
power system which comprises n equivalent units (prime mover and 
generator).    We will derive an equation of the system for the case of 
small deviations of the controlled variables from a preset operating mode. 
The active and the reactive impedances in the system are assumed constant 
during each particular transient. 

< 

-^5M-g-^—j ransmission 
line 

> 

FIGURE 1.3.   An i-th unit of a complex power system. 

We start with the equations of the various components of the i-th 
equivalent unit. 

1.    The equation of motion of the t'-th equivalent unit is 

,    d A(Ö; .   . . 
(1.41) 

where /( is the reduced moment of inertia of the unit, Am the change in 
frequency, AAff the torque increment. 

The torque is made up of two components: the actuating torque and the 
resistance (generator) torque; we may thus write 

AM^AAlH + AiW,.. (1.42) 

where AM« is the change in generator torque, AAfia the change in actuating 
torque. 

The resistance torques are expressed by the functional dependence 

Afj=Af,(«,l, 0,2- •••-  bin>  Edn £■„,„, 0)„ W2, ..., ü>„) (1.43) 

and 

MVl "=- 21§- Ad<* - ti ä 
A"'*_ S 4ärAra*' (1.44) 

where 6ik are the phase angles between the free-running e.m.f.  of the 
£-th generator and the voltage developed by the i-th generator (which is 
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r 
regarded as the leading generator), Edi is the free-running e.m.f. of the 
i-th generator, A(oft is the change in frequency for the £-th generator.    If 
the first generator is regarded as the leading generator, the phase angles 
in the equation for any i-th generator should be reckoned from the e.m.f. 
vector of the first. 

All partial derivatives in (1.44) are found from the corresponding static 
characteristics.    Replacing them with appropriate constant coefficients and 
making use of (1.42) and (1.44), we write (1.41) in the form 

n n n 

Ji ^P- = - S ai* A6<* — 2 ß<* A£* — 2 Y(* AcoA + AM,. 
6=1 *=1 *=I 

n n n 

YiiAffli=-2oi*ft|*-2&*A£*-2w,)* + A7M"- (1-45) 
d ha, 
~dt~ 

Here 

*=i 

2.    The equations for the phase angles 6is are 

Aö/JS = J (Aw, — A»s) rf< 

Ä = Acoi-Acoii. (1.46) 

Equation (1.46) clearly remains valid when the e.m.f. vectors of all the 
machines are reckoned from the e.m.f. vector of the first machine. 

3. We now derive the equation of the motor's excitation circuit.    It is 
assumed that the synchronous generator is excited by a special exciter. 
The fast electromagnetic processes in the Stator circuit of the synchronous 
generator are ignored at this stage. 

The transient in the rotor circuit of the i-th generator is described by 
the following differential equation: 

dE' 
Eu. = Eu+TM-£-, (1.47) 

where  Tiia is the time constant of the excitation circuit, E'u is the e.m.f. 
across the synchronous reactive impedance. 

If no voltage control is provided, Eiie is constant.    In voltage-controlled 
generators  Eide depends on the parameters of the excitation circuit, the 
exciter, and the voltage control system.    For small deviations equation 
(1.47) takes the form 

AElde = AEld+Tld0^k. (1.48) 

4. Let W0i(p)be the transfer function of the exciter and voltage controller. 
The relationship between AE;de and the change in voltage at the generator 
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terminals is then written as 

AElde(p)=W0i(p)&Us(p). (1.49) 

The voltage at the generator terminals is measured,  and not the free- 
running e.m.f.   Another expression is therefore required,  relating the 
free-running e.m.f. to the voltage at the terminals. 

Id Id 

FIGURE 1.4.   Vector diagrams of a synchronous machine. 

From the vector diagram (Figure 1.4) we may write 

Etd = Eld — \Xtd — Xid) lid 

and 

Ul=\Etd— hdXld) -\-IlqXlq. 

(1.50) 

(1.51) 

Here x'td is the transient reactive impedance of the generator, xid the 
reactive impedance of the generator along the longitudinal axis, xiq the 
reactive impedance along the transverse axis, Iid  the longitudinal component 
of the stator current, Iiq the transverse component of the stator current. 

We further assume for the sake of generality that the generator being 
considered is a salient-pole machine; then for the current components 
we write* 

Em E\t />"=~^rcos a" ~~ "zircos (~ö;i ~an)' 
E E 

l'i= ~T*k sin a" + ~?f~ Sin (~ö" — a'^ 

Here EQi is the equivalent e.m.f.  of salient-pole generators: 

EQi = AEld + BEU cos (— 6a — on). 

(1.52) 

(1.53) 

(1.54) 

The constants A and B are expressed in terms of the generator parameters: 

j   ,    xlq — xld 

A = ;  
xid~xlq 

xld~xld 
— {Xld-'d) xid — xlq 2ll 

Detailed derivation of these equations is given, e. g., in /47, 69/. 
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B-- 
*li — *u       cos a,., 

where       is the self-impedance of the substitution circuit between the 2-th 
and the 1st generator (Figure 1.5),  Zit is the mutual impedance of the 
system between these generators. 

Z, Zt 

I -«=1 ^ 

VS/M 

FIGURE 1.5.   Diagram of impedances. 

Substituting (1.52), (1.53), and (1.54) in (1.50) and (1.51) and linearizing, 
we find after simple manipulations 

(1.55) 

(1.56) 

where 

K, = l- -.Acosa,,, 
Zu 

2A*;,, cos a;i / ß cos an 1   \ 

+sin2(_0a_an)[£|k_^^^i_^ 
w/ = ~ [2£M (1 - 2*w ^- cos a,, + -^- cos a/f*Ü - 

-£/10cos(-6n-an)(^^" as-^T)]' 
5.    The equation of speed and frequency control for the i-th generator is 

^i = Rt(p)A(äl. (1.57) 

We have thus obtained the following set of equations describing the i-th 
generalized unit: 

n n n 

ViP + yu) Aco; = _ 2 alk A6;s - S ß/s A£ft - 2 7,* A(ot+ AMU, (1.58a) 
A = l ft=l ft==l 
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AEide = A£,rf + Tidop AEj, 
AZ-^U^^A^, 

MJi^LtMu + N^Eu, 
AMi = Rl(p)Aal. 

[1.58b) 

These equations cannot be simplified unless we have decided what the 
controlled variables of the system are.   As far as the quality of the generated 
electric power is concerned, the frequency and the voltage must be 
maintained constant.    In some cases, however,  stability considerations, 
say,  suggest that the phase angle 6« should be controlled.    This approach 
is also advisable if the voltage of the generalized units (power stations) 
is controlled via the phase angles 6,7, using remote phase meters.    The 
controlled variables are therefore the frequency at, the phase angle A6,/,, 
the generator voltage £/,, the e.m.f. of all other generators Eh,  and the 
frequency of the other generators v>k(k +i). 

Eliminating E'u, Eid,  and £««. from (1.58), we obtain the following set of 
equations for the t'-th unit: 

(J,P + y„)a>/ = - 2 *lt A6ik - 2 fc* AEt - 2 Y/* Aco, + AM,.., 
*=i *=i *=i 

p A6;i = Am, — AiOj, 

TM[vt—Qgl)p^--[±A6ik+ [   (1.59) 

AM,. = ^,. (p) AM,., 

AMu = KAMt. 

Similar sets of equations can be obtained for the other generalized units 
of the complex power system.    The entire power system is described by 
equations (1.58) with /= 1, 2, .. ., n.    If some units have no frequency or 
voltage control, the corresponding terms vanish. 

The coupling in this case is twofold.    First,  in each individual unit the 
generator voltage (or e.m.f.) is sensitive to variations of frequency and 
speed.    Each unit thus constitutes a multivariable interacting system. 
But the coupling goes further: the processes in the i-th unit affect all the 
other units of the power system as a whole. 

§1.3.   A RECTIFYING COLUMN 

A rectifying column is a very common installation in petrochemical 
and gas industries.   From our point of view a rectifying column is a 
typical multivariable plant representative of a whole class of industrial 
processes adapted to automatic control.    We therefore proceed with a 
discussion of some elementary properties essential for the understanding 
of the physical foundation of the rectification process and then give detailed 
mathematical treatment of some simple cases.   Although there is a 
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considerable variety of rectifying columns, they all operate on the same 
principle and can be described by identical mathematical equations. 

Rectification is a kind of distillation,  i. e.,  separation of a liquid 
mixture into constituents which have different boiling points.    Rectification 
is carried out in such a way that an ascending stream of vapor comes in 
contact with a descending countercurrent of condensed liquid,  i.e.,  the 
base of the column is heated while its upper portion is cooled.    A schematic 
diagram of a rectifying column is shown in Figure 1.6. 

'-&<£ -*~w 

FIGURE 1.6.   A rectifying column for the separation of a 
binary mixture: 

I  column, II condenser, III  accumulator, IV  reboiler; 
1) crude feed, 2) overhead product, 3) bottoms, 4) vapor, 
5) reflux, 6) vapor-liquid mixture, 7) vapor phase, 
8) liquid phase, 9) water, 10) gas out. 

The main element of a rectifying column is the packing,  namely plates 
or trays on which the vapor comes in contact with the liquid phase.    The 
vapor is thus enriched with the low-boiling component,  and the proportion 
of the high-boiling component in the liquid also increases.    A functional 
diagram of a bubble-cap plate is shown in Figure 1.7. 

0^LM 

FIGURE 1.7.   Functional diagram of the rectifica- 
tion process: 

1) column wall, 2) plate, 3) cap, 4) liquid, 5) vapor. 
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Depending on the composition of the crude feed,  we distinguish between 
columns for separation of binary mixtures and columns for separation of 
multicomponent mixtures.    The calculations for multicomponent rectifying 
columns are substantially more complicated,  and the corresponding 
processes have been poorly studied. 

(a)     COLUMNS FOR SEPARATION OF MULTICOMPONENT MIXTURES 

A binary column is that where the finished product is only the overhead 
distillate or the bottoms.    Automation of binary rectifying columns should 
be implemented with due regard to the industrial objectives and the 
engineering aspects of the process.   The following cases can be distinguished. 

Case   1.    Product concentration higher than required.    Losses less 
than permissible. 

The goal is to make the product as pure as possible and to produce as 
much of it as is feasible,  irrespective of power requirements. 

Case   2 .    Product concentration higher than required.    Optimum 
power consumption. 

A very-high-purity product is to be separated, but its quantity is 
determined by power losses from cooling water and vapor. 

Case   3 .    Product concentration not lower than the stipulated figure. 
Uniform product efflux. 

The distillate constitutes a feed to another industrial process,  so that 
excessive fluctuations of product discharge are undesirable. 

Case   4.    Optimum economy irrespective of product concentration 
and quantity. 

The input and output variables of the rectifying unit illustrated in 
Figure 1.6 are shown to first approximation in Figure 1.8.    Note that some 
of the input variables in Figure 1.8 are interrelated.    For example,   a change 
in the quantity of feed affects the condenser operation and the reflux temper- 
ature is altered; a change in the pumping rate of the overhead product 
alters the quantity of reflux,  etc. 

FIGURE 1.8.   Schematic diagram of the variables 

in a binary column: 

1) quantity of feed, 2) composition of feed, 
3) temperature of feed, 4) reflux flow rate, 
5) reflux temperature, 6) pumping of overhead 
product, 7) pumping of bottoms, 8) water flow 
rate in the condenser, 9) vapor flow rate in the 
reboiler, 10) top plate temperature, 11) bottom 
plate temperature, 12) *-th plate temperature, 
13) composition of overhead product, 14) com- 
position of bottoms, 15) composition of mixture 
on the bottom plate,  16) liquid level in the 
accumulator, 17) liquid level in the reboiler, 
18) pressure in the column. 
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A simple rectifying unit for the separation of binary mixtures is thus 
a multivariable plant with numerous inputs and outputs.    Complete descrip- 
tion of the column requires knowledge of the relationships between the inputs 
and the outputs shown in Figure 1.8. 

One of the main paths is the "feed composition-to-product concentration". 
Analytical and experimental (using laboratory rectifying units) studies of 
this path were published by various authors /83, 84/. 

The equation of each plate is derived proceeding from the material 
balance of the low-boiling component.    Under certain assumptions it has 
the form 

(T„P + l)Ck= tfuA-i + KiA+i. (1.60) 

where k is the plate number, Kik, KM the gains, Th a time constant, Ch 

concentration deviation of the low-boiling component on the 6-th plate. 
The equations of the condenser,  reboiler,  and feed plate differ only 

in the number of terms entering the right-hand side of (1.60).    The 
constants Tk, Klk, and K2k depend on the velocity of vapor and liquid streams, 
the form of the equilibrium curve interrelating the composition of the vapor 
and the liquid phase on each plate,  and the liquid mass on the plate. 

Equations (1.60) ignore the hydrodynamics of vapor and liquid streams. 
This omission is rectified with the aid of the equations 

^P+\)Vb=Vk_J (1'61) 

where Vh is the flow rate of vapor rising from the £-th plate,  Lk the flow 
rate of liquid dripping from the k-th plate, ti and T2 are the corresponding 
time constants of the k-th plate. 

Putting k= 1, . . . , n, we obtain a set of equations for this simple binary 
column.    We wish to stress again that the equations were obtained proceeding 
from the material balance of one of the components. 

(b)     COLUMNS FOR SEPARATION OF BINARY MIXTURES 

Rectifying towers for fractionation of petroleum products are much more 
difficult to control than the previously considered simple binary columns. 
As we have noted,  distillation in binary columns is mostly described by 
three inequalities: 

cbt<:cbl3, 
C,b<Ctb3, (1.62) 
D>D3, 

where Cb, is the content of the bottoms component in the overhead distillate, 
Ctb is the content of the overhead product in the bottoms, D the separation 
factor.    The subscript 3 denotes the standard reference values of the 
corresponding quantities. 
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A vacuum distillation column for multicomponent mixtures is described 
by considerably more numerous constraints, 
are the following: 

' eb "^ * eb 3» 

' flash ->  Alash3> 

The more obvious of these 

(1.63) 

C>C3, 
Ö>Ö3, 

where T ,b is the lower boiling temperature of the fraction, Tcb is the end 
boiling temperature, 7naShthe flash-point temperature,  V the viscosity of 
the fraction, C the color of the fraction, D the separation factor. 

This set of constraints is of course applicable to each withdrawn fraction. 
A characteristic feature of a vacuum distillation column from the point 

of view of a control engineer is that its optimum operating conditions are 
characterized by a generalized index which is a functional of numerous 
controlled variables (reference values and other quantities).    Optimal 
reference values are determined by the industrial plant conditions.    If 
the distillate is a marketable product,  optimization is impossible without 
knowing the dependence of cost and market price on product composition. 

An optimality test is provided,  say, by the profit amassed in time   T, 
If the dependence of profit on product composition is a function with an 

extremum, the column is optimized if 
a maximum profit is ensured.    If the 
distillate requires further processing 
before it can be marketed, we must 
know the relationship between distillate 
composition and the cost of subsequent 
processing.    It is thus clear that 
constraints (1.63) constitute only the 
first step in the development of optimum 
control systems for rectifying towers. 
However,  in general,  as the constraints 
(1.63) approach equalities, the operation 
of the column under the given set of 
conditions becomes progressively more 
economic. 

The static and the dynamic character- 
istics of the column are required for the 
solution of the problem before us.    In 
what follows we derive an equation relating 
the mass flow of the feed and the product 
to temperature conditions in the column. 
This statement of the problem is under- 
standable since in most rectifying towers 
temperature is one of the controlled 
variables. 

A technological diagram of the column 

7 

 —S 

FIGURE 1.9.   Column for separation of a multi- 
component mixture: 

I  column, II  accumulator, III  barometric 
condenser; 1) feed, 2) superheated vapor, 3) 1st 
fraction, 4) 2nd fraction, 5) 3rd fraction, 
6) bottoms, 7) reflux. 

is shown in Figure 1.9. 
and the residuum. " 

The tapped products are the 2nd and 3rd fractions 
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The automatic control of these columns constitutes a complicated problem. 
With binary columns no more than two or three constraints had to be satis- 
fied (e.g.,  concentration greater than reference,  losses less than reference), 
while in vacuum distillation columns the number of constraints is much 
greater. 

The five principal constraints for each fraction are the following: 
1.    Lower boiling point higher than reference. 

End boiling point less than reference. 
Viscosity less than reference. 
Flash-point temperature higher than reference. 
Color stronger than reference. 

The "controllability" of the column thus becomes a very topical question. 
The interrelationships between the column inputs and outputs are 

indicated in Figure 1.10, which shows only the most important variables. 
Block diagrams of the rectifying tower are given in Figures 1.11 and 1.12. 

2. 
3. 
4. 
5. 

FIGURE 1.10.   Illustrating the inputs and outputs of a multi- 
component column: 

1) feed flow rate, 2) feed temperature, 3) feed viscosity, 
4) reflux of 2nd fraction, 5) withdrawal of 2nd fraction, 
6) reflux of 3rd fraction, 7) withdrawal of 3rd fraction, 
8) vapor flow rate, 9) lower boiling point of 2nd fraction, 
10) end boiling point of 2nd fraction, 11) viscosity of 2nd 
fraction, 12) flash-point temperature of 2nd fraction, 
13) color of 2nd fraction, 14, 15, 16, 17, 18) ditto for 
3rd fraction, 19) temperature of 2nd fraction, 20) temper- 
ature of 3rd fraction, 21) temperature on s-th plate, 
22) liquid level in the accumulator, 23) bottoms quality. 
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G 
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x. in, y\ N, = 2</ 

Mr 20 
N2=19 
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K 
ff-1 
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M3-n 

FIGURE 1.11.   Illustrating the derivation of equations 
for a multivariable column. 

FIGURE 1.12. Illustrating 
the derivation of equations 
for a multivariable column. 
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Nomenclature : 

0„ 02, 03 = the withdrawn quantities of each fraction; 
Go-i, Go-2 = the quantities of reflux for the corresponding fractions; 

Gg= gas flow into the barometric condenser; 
k = plate number,  reckoned from bottom to top; 
M,= number of plate from which the fraction is withdrawn; 
Af,= number of the reflux plate; 

X inl = deviation in mass flow of feed; 
A"*„;= deviation in temperature of feed; 

X„= deviation in temperature of liquid phase on the A-th plate; 
kk = liquid level deviation on the 6-th plate; 
tk = temperature of liquid phase on A-th plate; 
Tn = temperature of vapor phase on 6-th plate; 
to-t = temperature of reflux; 
Lk = flow of liquid dripping from 6-th plate; 
vt = flow of vapor rising from £-th plate; 
ciq = slope factor of the straight line approximating the temperature 

dependence of the specific heat of liquid; 
cv = slope factor of the straight line approximating the temperature 

dependence of the specific heat of vapor; 
m = mass of liquid on the plate; 
H = level of liquid on the plate; 
F  — accumulator surface area; 
D = column diameter; 
p   = liquid density; 
ö    = symbol of deviation. 

Assumptions adopted in the derivation of equations 

1. The feed is liquid at its boiling point. 
2. Temperature variation on the plates does not affect the velocity of 

the vapor. 
3. Vapor and liquid temperature deviations on the ft-th plate are 

related by 

4. Total condensation occurs on plate A/, ( Ge= 0). 
5. The delay of the vapor on the A-th plate is negligible. 
6. Change in level is negligible on all plates,  except M,. 
7. LMl= 0,  since in this column the downpour from the 20th plate is 

quenched. 
8. The effect of water steam flow on column temperature is negligible. 
9. The hydrodynamics of the liquid is ignored. 
In the mathematical part we use the well-known equations of heat balance. 
We consider several cases. 
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Case   1 .    The equation of the ft-th plate. 
The equation of statics (steady-state conditions,  see Figure 1. 13) can 

be written in the following form: 

The equation of dynamics: 

«»-ic.tr*., + ör»_t) - v„c, (Tk + of») + 

where ^4 = iwclci. 

- (£* + 6£*) «„('» + «*) = 4 ■§- 

A^j '/////////////////A m 

FIGURE 1.13. Illustrating 
the derivation of equations 
for a multivariable column. 

Seeing that the liquid flow in the given section may change only due to a 
change in the quantity of reflux, we may write 

In view of assumption 3 above 

bTk = kt>th~kXt. 

Passing to an equation in deviations, linearizing,  and Laplace-trans- 
forming, we find 

where 

*       C,„A«. + CVäO4 

the time constant of the A-th plate, 

** = "v*P*-l 

«i,*-*+ "„*»* ' I    nondimensional gain factors, 

u       fü^tiZjM dimensional gain factor. 

Equation (1.64) is sometimes conveniently rewritten as 

•** + P*-*A-l + 0lA + l = Yashin 3> (1.65) 
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where 

"kP+l V3* = <**/>+1 ' 

Case   2 .    The equation of the N2 -th plate (Figure 1.14): 

<«», -(LN, + t>LNl) clq (tN, + btN,) + (Go-2 + ÖO0.2) Cu, (to-2 + 6/0-2) = A -J£-. 

W//////////////S. 4 f 
'o-z 

FIGURE 1.14. niustrating 
the derivation of equations 
for a multivariable column. 

Acting as before and seeing that 

Ö4-2 ~ -Vin3 

and 

6Go-2 = 6Z.A -f m 3> 

we find 

where 

(aN,P + 1) A'yv, = bNlXN2-\ + fe/v.A'ta 3 -f- ^*WlA"*„ s 

aWj 
Clqt-N. + CMN, ' 

cl0LN,+ cvkvN, ' 
cN, = 0, 

C'<1 (<0.2 — */Y,) 

clqG0-2 

CN, 

fc/V, c*LNi +cvkvNi • 

Case   3 .    The equation of the Af2-th plate (Figure 1.15). 
The equation of dynamics: 

+(^Af,+i 4-*ZJK,+ I)CI, (^,+1 +6^+1)—(X/M,+*^,)Clq (^J,+WAO— 

— (G2 + ÖO2 + G0-2 4- ÖG0.2) ft, (<*,, + 6/A,,) = yi -^t'. 

(1.66) 
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%\ vj 
W/////////////A M2 

I 

Sl^s3 \ G2+G0 

FIGURE 1.15.   Illustrating 
the derivation of equations 
for a multivariable column. 

Acting as before and seeing that 

and 
6Go-2 = ÖL.MJ+l ~ -^in 3 

ÖG2 = — ÖZ.JM, ~ X t„ 4, 

we find 

where 

(V + X) XMt = bMXM,-l + CM,XM>+\ H- W*in 3, 

■**" «lq (G2 + Go-2 + ^Af,) + C,*»Ma  ' 

b/n, 
c„*f* 

km-. 

MG2 + °o-2+£*,) +«»*»*, 
 cig*-Af,+i  

Al. — clq (G2 + GM + i^) + cv*t»^, 

«lq (02 + GQ.2 + LMi) + Cv ftt/Afi 

Case   4 .    The equation of the £-th plate (M2 > k > M3). 
The equation is derived precisely as in Case 1.    Seeing that 

(1.67) 

we obtain 

8Z-ft~—Xu 

IflkP + !)** + **^*-l+   CkXk+\ + kUXtaA< (1.68) 

where 
ciq (*»— **+!/ 

Case   5.    The equation of the Mi-th plate (Figure 1.16). 
The equation of dynamics: 

',r,',(r*-,+6V.)-V,(^+^)+ 
-\- (Z.M. + 1 + 6IM|+ l) Ciq (<«,+ 1 + 0<Af,+ l) — 

— (G„., + 60M + Gi+öd) Ciq ('«, + MAJ.) = 
<<[(//+ W) fa,+ »<M,)] 

= clqFp s , 
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i       i W'. ' 

'//// 
y/////////////////, "/ 

t 
VMJ /r».- fa + e, 

FIGURE 1.16. niustrating 
the derivation of equations 
for a multivariable column. 

Passing to the equation in deviations,  linearizing, and Laplace-trans- 
forming,  we make use of the fact that 

and 
t>LM,+ i = 60o-i ~ Xi„i 

to obtain 

= «Af.-lC,^,-! + ^, + ,«1,^ + 1 + C><, (',«, + . - <*,,) *,„ 1 - t«,^Xt0 2. ( 1 . 69) 

The equation of material balance for this plate is 

Fpph = -Xir,2, (1.70) 

i.e.,  equation (1.68) in fact is a combination of two independent equations, 
(1.69) and (1.70): 

pi/> + (0„, + G,K + VV*FA>, = 
= *M,-tcMK,-i + Avf,+ic A1+1 + cH (tMi+1 - tM) Xbi. (1.71) 

From (1.69) and (1.70) it follows that the liquid level in the accumulator 
is independent of temperature, and the withdrawal of the distillate does 
not affect the temperature.    These conclusions follow from the linearized 
equations; the validity of the starting linearized equation, however, 
requires experimental verification. 

The equations for the other plates are derived similarly to one of the 
cases (1.64)-(1.69). 

An analysis of the equations of various plates has shown that the general 
equation of the A-th plate may be written as 

(akP + 1) Xt = bkXk_, + etXk;1 + kltXta 1 + k\kX^ , + 
-\-k3kXtoZ-\-k3kX i„3-\-k\kXia 4+feftA'in 5. (1.72) 

Some of the coefficients in (1.72) may be zero. 
The coefficients in (1.72) are the following: 
ak— Cl Qt-j-cv^t' 

tne plate time constant, Qh being the total flow of liquid 
from the plate; 
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bt = C|,Qt + cv*f ft nondimensional gain factors taking into account the 
.. _—__——      temperature of the overlying and underlying plates; 

* Cltfik + ^^k       I 

klh, k3h   are coefficients corresponding to the effect of the reflux mass 
flow; the coefficients kih (i= 2, 3) are defined by the following relations: 

(a)   for the plate receiving the reflux 

c.iq(A> — h) 

«lqQs + Cv*«'* 

(b)   for any plate in the reflux section,  including the plate from which 
the distillate is withdrawn, 

k,t = 
Clq fa-t -'*) 
ClqO* + <\*f ft 

(c) for other plates   kik= 0; 
k\k and kit are coefficients that allow for the effect of reflux temperature; 

the coefficients A** (i= 1, 3) are defined by the following relations: 
(a) for the sprinkled plate 

ki, 

(b)   for other plates  ku, = 0; 
kih and k5h are coefficients that allow for distillate outflow; the coefficients 

ki]{ (i'=4, 5) are defined by the following relations: 
(a) for the plate from which the distillate is withdrawn  kih= 0; 

(b) for any underlying plate klk == ^*~^ ■ 

Dividing the left- and the right-hand sides of (1.72) by (a,,p+l),  we find 

+ Y;^;3 + V4ft^ln4 + 75A5. (1-73) 

The equation relating the various column variables is then written as 

B-X = DXln, (1.74) 

where B and D are matrices, 

    ß2(     1 
       ß23 1        ff23 

       K22 1        °22 

1 Ö3 

ß2 1 02 
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D = 

Yl,24 Vl,24 0 0 0 0 

Yl,23 0 0 0 0 0 

Yl,20 
0 0 0 0 0 

0 0 Y3.19 V3.19 0 0 

0 0 
^3,18 

0 0 0 

0 0 Y3,15 
0 0 0 

0 0 0 0 \l4 0 

0 0 0 0 \io ^5,10 

A-and Xin are column vectors, 
f X, 

X, 

X = 
■^in I 

and   X ,„ = 

§1.4.    OIL STRATA WITH LINEAR SEEPAGE 

In plan 
Formation 

boundary 

From the point of view of multivariable control,  oil fields have much 
in common with the controlled objects discussed in the previous sections. 
Anticipating, we can say that the common feature for these multivariable 
objects is that quality is regarded as a generalized index dependent on a 
variety of factors and numerous constraints,  so that the control problem 
is reduced to extremizing some functional.   It will be shown in Chapter Eight 

that, under certain additional conditions, 
the control of an oil field can be reduced 
to extremization of a linear form. 

Crude oil is a mixture of solid,  liquid, 
and gaseous hydrocarbons impregnating 
a porous medium.    If a well is sunk in 
this medium, the stratal pressure will 
drive the crude oil to the surface. 

In order to maintain sufficient stratal 
pressure in the production well, water is 
pumped into the reservoir through so- 
called injection wells which ensure what 
is known as secondary recovery of oil. 
Figure 1.17 is a schematic diagram of an 
oil reservoir.    The output, or controlled 
variable for each i-th well is the quantity 
of liquid Q,- produced.    Note that the well 
may produce stratal water as well as oil, 

and the yield therefore does not provide an unambiguous quality criterion 
of well operation.    The problem of efficient working of an oil field will be 
considered in Chapter Eight.   Here we will only derive the control equation 
of the reservoir, taking Q( as the well output. 

Section along A —B 

Bottom 

FIGURE 1.17.    Schematic diagram 
of an oil reservoir. 
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The oil field may have two operating modes: 
(a) elastic,  when the pressure at any point in the pay rock is a 

function of time, other conditions being constant.    This is a transient mode, 
arising immediately after a certain disturbance is applied to the pay, 
e.g., when the well is stopped; 

(b) rigid, when the pressure at any point is constant during a certain 
time interval, being dependent on the position of that point only. 

In the general case of elastic or rigid conditions, one of the main 
problems of the theory is to determine the pressure at any point in the 
oil-bearing stratum and at the face of the well at any time; the size and 
the physico-geological characteristics of the field are assumed to be known. 

It is shown in the literature /72, 75, and others/ that the general behavior 
of an oil reservoir is described by the following partial differential equation: 

_d_ 
dx 

(kh  dP\   ,    d   Ikh  dP\   .   d   I kh  dP\       P,„   „     »  ,    1   dP ,-,   7I-\ 

where P is the stratal pressure,  h the thickness of the stratum, k the 

permeability, n the viscosity of the medium, a2=—g»-, where ß * is the 

storage coefficient of the stratum,  or the so-called p ie z ope r m e ab ility , 

-Ji- = /?hd  is the hydraulic resistance of the medium,   F(x, y, z) a discontinuity 

function, which is identically zero at all points of the reservoir,  with the 
exception of the points at which wells are sunk. 

dP For the rigid mode -gf = 0 and (1.75) takes the form 

_d_ 
dx hk£)+£te£)+*te£H^**       (1-76) 

The problem can be simplified if planar conditions are assumed,  i.e., 
the thickness of the oil stratum is regarded as small in comparison with 
its extent.    The flow of liquid along the z axis can be ignored so that 

■gj-= 0.    Equations (1.75) and (1.76) thus take the form 

d  /   1     dP\   ,0/1     dP\       „,        .   .    1   dP ,,   __, 

and 

Mih%)+bhk%hp**- (1-78) 

With boundary conditions of the first kind the pressure 

P* = nx,y,z) 

on the boundary is constant, and the pressure  drop is thus zero, 

AP„=0; (1.79) 
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alternatively, the rate of change of the pressure droponthe boundary is zero 
(boundary conditions of second kind), thus: 

dt    —u- 

The last case corresponds to a closed oil reservoir. 
Solving equation (1.75) or (1.77) for appropriate boundary and initial 

conditions,  we obtain the debit Q as a function of pressure.    The problem 
thus reduces to finding P=F] (x, y, z, /)and Q=F2{x, y, z, t).    For various producing 
conditions the debit of the well can be expressed by the following relation, 
which is in fact the Darcy law of filtration: 

n~      LP (1.80) "*       R{x, y.z)' 

where R(x, y, z) is the equivalent resistance to liquid flow in a pressure 
gradient  AP. 

If for the first well R(x ^     = a„, and there are no other wells,  equation 

(1.80) takes the form 

Qi = anAP,. (1.81) 

Consider the case of an oil reservoir with n production wells.   A change 
in operating conditions in any of the wells causes redistribution of pressure 
in the entire field.    For the rigid mode, the behavior of the field is described 
by the equations 

a-uQi+al2Q2+ ... + alnQn=&Pu 

a„iQ. + an2Q2+ ••• +a„„Q„ = AP„, 
(1.82) 

where a« is a coefficient that describes to what extent the processes in the 
<'-th well influence those in the j-th well.    Equations (1.82) describe the 
behavior of an oil reservoir in the rigid mode from the standpoint of multi- 
variable control theory. 

In the elastic mode the stratal processes are described by convolution 
integrals.    In what follows, however, we are only concerned with optimiza- 
tion of rigid operating conditions, and equations (1.82) are thus quite 
sufficient. 

31 



Chapter Two 

MULTIVARIABLE CONTROL SYSTEMS 
WITH BASIC ELEMENTS 

§ 2.1.    INTRODUCTORY REMARKS 

In this chapter we consider automatic control systems where each 
single-variable loop is built of basic elements only.    By basic elements 
we mean /39/ the controlled object or plant, the measuring device or 
transducer, the controller or regulator and,  in general,  a number of 
amplifiers.    Simple systems of this kind are designed for each controlled 
variable, and schematically they are represented by single-loop diagrams. 

As we have previously noted,  the relationship (or coupling) between 
controlled variables in multivariable systems may be attributed to the 
peculiar properties of the controlled plant.    In this case we say that the 
controlled variables are interrelated through the controlled object (or 
through its properties).    An alternative way of saying it is that the 
variables are plant-coupled.    The relationship between the controlled 
variables may be also artificially introduced by means of transducers 
or control paths; finally,  some interrelation may be imposed by the 
technological or production process.    In what follows, the term multi - 
variable   control  systems   (MCS) is understood in the quite general 
sense of systems with interconnected variables,  irrespective of the 
particular mode of coupling.    From the examples considered in Chapter One 
we see that the number of controllers or regulators is not always equal 
to the number of controlled variables.    If the controlled variables are 
regarded as the plant outputs and the controller coordinates as the inputs, 
we may assume quite generally that the number of outputs is less than 
or equal to the number of inputs.    Study of simple multivariable control 
systems with single-loop subsystems should provide a foundation for the 
design of effective control systems,  a problem of obvious practical 
importance.    In order to simplify the mathematical description of the 
process, we shall first consider the properties of multivariable plants. 

A multivariable plant may take on two fairly general alternative 
configurations shown in Figures 2.1 and 2.2.    For the sake of simplicity, 
the transfer functions for two controlled variables only are shown.    In 
the sequel the particular results for the two-variable system will be 
generalized without difficulty to any number of controlled variables. 
We do not consider here the case when the output of the coupling element 
Wih(p)is delivered neither to the input nor to the output of the element 
with the transfer function Wu(p), but to some intermediate point,  since 
it is easily reduced to one of the principal cases by a simple modification 
of the function Wih(p). 

32 



We now proceed to derive an equation for the first controlled variable 
K.ou, in cases depicted in Figures 2.1 and 2.2.    For Figure 2.1 we have 

Yx o„, (P) = Wn (p) [X, ln (p) - Wn (p) Y2 m (p)] = 

= Wn(p)XiiAp)-Wn(P)Wn(p)Y2mt(p)- (2.1) 

A similar equation can be written for the second channel.    Let us now 
consider the second case,  that in Figure 2.2: 

Yx „ (P) = Wn (p) X, In (p) + Wa (p) X, in. (2.2) 

If the number of controlled variables is not two but n,  the equation for 
the j-th controlled variable in the first configuration is 

Yi ou, (P) = Wn (P) X, (p) - Wu (p) 2 Wlt (p) Yt „ (/>), 

and the output of the second configuration is 

Y, „ (P) = Wu (p) X, (p) + 2 Wtk (p) Xk b (p). 

(2.3) 

(2.4) 

The difference between the two alternatives is the following: in the 
first configuration the j-th output is dependent on the  j-th input and the 
outputs of all the other controlled variables, whereas in the second 

%H5 
W„(p) 

Yl.out 
y~     S      * * 

1 1       W„(p) ' 

^ 
f       Wa(p) 

W22(pl     , 

»       J      » • 

FIGURE 2.1.    A plant with cross 
coupling. 

X. 
W„(p) 

Al in 
> -v V' 

W2,(p ) ' 1 

> 
w»(p ) 
> 

*2 in 
WM(p )   , 
> .   iC- 

—*<s 

f out 

FIGURE 2.2.   A plant with direct 
coupling. 

configuration the j-th output is a function of the j-th input and all the other 
inputs.    It is easily understood that the first case can be reduced to the 
second by a certain modification of the transfer function Wik(p).    As we 
have not imposed any restrictions on the form of the coupling transfer 
function, we will consider the first configuration only (a system with 
cross   coupling), using the general symbol aih(p) for the coupling 
coefficients.    In the case of cross coupling, we obviously have 

*i>(P)=Wlk(p); (2.5) 
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and for direct coupling (Figure 2.2) 

<*;* (P) ■■ Wkk(P)- 
(2.6) 

The controlled variables are often interconnected simultaneously by 
both direct coupling and cross coupling.    This, however,  does not alter 
the structure of equation (2.4).    It is only the function ««,(/>) that changes. 
This approach to plant equations is justified because in practice the 
controlled object is fixed from the start and we are not free to change 
its structure.    As regards the control system, the aim of the designer 
is to choose the optimum structure, and one does not generally start 
with equations of known form.    In the sequel we therefore concentrate 
on methods   of   selection of control-system structures. 

§ 2.2.    TRANSFER FUNCTIONS OF MULTIVARIABLE 
CONTROL SYSTEMS WITH BASIC ELEMENTS 

Consider a multivariable control system with n controlled variables 
interrelated through the controlled object.    A subsystem made of basic- 
element components is provided for each of the controlled variables. 

fix 6* 
fl">„(P)       t. 

> 
"K > 

"H >   1 -»■ > > -*% r* ' 
1 

£ r«ixi £ **< If f 

FIGURE 2.3.   A general block diagram of a multivariable control 
system with basic elements. 

(a)   We assume that the measuring elements (transducers) are also 
interrelated (the case of load coupling will be considered under (b)). 
Figure 2.3 is a block diagram of the subsystem for the fc-th controlled 
variable.    The nomenclature pertaining to the A-th controlled variable: 

K/,= the plant gain; 
D„(p)= the denominator of the plant transfer function, henceforth called 

the self-operator;* 
Yk= the controlled variable; 
xk= the loop delay (lag); 

yk„.f- the reference value of the controlled variable; 
alk(p)= the coupling coefficient of the j-th and ft-th variables,  dependent 

on the properties of the plant: o«(p) is either a constant (positive 
or negative) or a function of the operator p; 

•    [In this translation the adjectival prefix "self-" qualifies quantities and expressions pertaining to an isolated 
single-variable subsystem which does not interact with the subsystems of other, "extraneous" variables.] 
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Hk = the transducer gain;   . 
Rk(P)= the transducer self-operator; 

y't= the controller output; 
Kk!l = the amplifier gain; 

bk = the controller gain; 
Qk(P)~ me controller self-operator; 

rkl = a coupling coefficient between k-th and i-th transducers; 
fk = the load. 

We now write the set of equations in Laplace transforms for the 6-th 
controlled variable with zero initial conditions. *   Making use of the 
nomenclature in Figure 2.3, we write the plant equation 

Dk{p)e^>Yk(p) = Kl 

the equation of the measuring device 

the amplifier equation 

^*i(P)Yi(P) + Y-p(P) + fk(p) 

1 = 1 
'¥■!> 

X*(p) = K»tXt(p); 

and the controller equation 

Qk(p)Y'k(p)^bkX'k{p). 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

Eliminating Vk(p),  Xk(p) and X'k(p)between (2.7), (2.8), (2.9), and (2.10), 
we obtain 

[Dk (p) Rk (p) Q„ (p)eV+KkKk AnJ r» (P) + 

+KkRk (P) Qk (P) 2 akl (p) r, (p)=KkKk A^r* ,AP)+ 

+ KkKk .4»|i* 2 ruXt (p) + KkRk (P) Q„ (p) }k (p). (2.11) 

The subscript k runs from 1 to n, and we obtain a complete set of 
equations describing the behavior of the multivariable control system 
under the given conditions. 

Putting rki= 0 in (2.11) (the measuring devices are uncoupled), we 
obtain an equation for the class of MCS in which the controlled variables 
are interrelated through the controlled object only: 

[Dt (P) R> <J>) Q> (P) eV+ ****. «»!**] Yk (p) + 

+ KtR* (P) Q„ (P) S atl (p) K, (p) = KkKk An*K, ,Jp) + 

+ KkRk(p)Qk{p)fk(p)      tt=l, ..., n). (2.12) 

This means that initially the outputs of the various subsystems are zero, provided that they are described by 
first-order equations; if they are described by second-order equations, the first derivatives are also zero, etc. 
As regards the delay element, the output and its derivatives are assumed zero in the interval (-T, 0). 

35 



As a particular example, the equation of a multidimensional servo- 
system can be derived from (2.11).    A multidimensional servosystem is 
a MCS in which the controlled variables are interconnected through the 
measuring device only.    Therefore putting in (2.11) om = 0,  we find 

[Dt (p) Rk (p) Qk (p) e^ + KkKk An*] Yk (p) = 

= K„Kk Al**»'*„,(/>) + KkKk An* 2 rklX, (p) + 

where 

-KkRk(p)Qk(p)fk(p)      (A = l, ...,»). (2.13) 

%l — Keff — Y{. 

(b)   In the preceding we have considered the interdependence of the 
controlled variables contributed by the properties of the controlled object 
and by the coupling between the measuring devices (an artificially introduced 
factor).    In this case the load in the 6-th control loop affects the controlled 
variables in all the other loops via the £-th controlled variable.    In some 
cases, however, a change in the load in the ft-th subsystem may directly 
influence some other controlled variables.    It is moreover significant 
that the load (or the disturbance) is often introduced as an additional control 
factor.    In these so-called combined   control   systems the pro- 
portional deviation control (the Watt-Polzunov principle) is combined with 
load control (Poncelet principle).    The equation of a combined control 
system is obtained if equation (2.11) is modified to allow for load coupling. 
In a particular case, a combined control system may degenerate into a 
MCS with load coupling, provided that the load coupling is not employed 
as a control factor. 

Let $M(P) 
be a coefficient describing the effect of the t-th load on the 

fc-th controlled variable; ß*,- (p) is a constant number or a function of the 
operator p.    We assume that disturbances from extraneous loads (i.e., 
those not associated directly with the fc-th variable) are also fed to the 
plant input.    In this general case, we have 

[D„ (P) Q* (P) Rk (P) e^p + KkJ Yk (p) + 

+ KkRk (p) Qk(p)taki (P) Y, (p) + Kk „ i rki (p) Y, (p) = 
/ = 1 1 = 1 

n 

= KkmYkta(p)-\-Kkm'Zrl,t(p)Y,al(p)+KllRk(p)Qk{p)P^p) + 

+ KkRk(p)Qk{p)^ki(P)!i(Pl (2.14) 

where 

Kttot=KkKka\ik6k       (fc=l,2 n). 

If the disturbance from the self-loads is not delivered to the plant 
input but to the input of some other element in the control system,  the 

function of p before the sum 2 ß/t;(p) will change, while the equation as 
a whole will retain its structure. 
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The set of equations (2.14) applies to the most general case of multi- 
variable control systems,  provided that the individual variables are 
controlled by single-loop systems.    The equation of an ordinary combined 
control system (with a single controlled variable) can be obtained from 
'9    1 A\   K,r   ™i(finn   „..    tn\—r.. —Cl (2.14) by putting am (p)=rih = 0. 

§2.3.    EQUATIONS OF MULTIVARIABLE CONTROL 
SYSTEMS IN MATRIX FORM 

The equations describing MCS dynamics can be conveniently written 
in matrix form, which is very compact and sometimes facilitates the 
mathematical analysis of the system. 

We use the following symbols: ai{(p) denotes the operatorial expressions 
preceding the self-variables in equation (2.14), a^ip) denotes the operatorial 
expressions representing the influence of the i-th variable on the k-th 
variable.    Then 

atk(P) = D„(p)R„(p) Q„(p)eV + KkKk An*, 
a-m (P) = KtRk (P) Qk (P)a« (p) + Kk\ikf>kKakrkl, 
gkk(P) = KkRk(p)Qk(P). 

We also put 

Kh.Khaf>k\lh = Kkioi, 

KkRk (P) Q* (P) ß*< (P) = bki (p),   Kkmrkl = chl. 

In this notation,  equations (2.14) take the form 

AY = (K„ + C) Y,e, + DF + BF, (2.15) 

where 

A = 

«II (P)     "t2(p) 

«21 (P)      a!2 (?) 

fll/1 (p) 

"2n (/>) 

an (p)    ai2(p) ■■■ atn (p) 

O/n (P)    o„2 (p) ... a„„ (p) 

Y = 

DF-- 

/i(p) 

gn(p)fi(p) 
g?2 (P) ft (P) 

gii{P)fi(P) 

gnn U>) fn (P) 

fn(P) 

Kl tot' I rcf 

f» tot''s id 

I'll?) 
M/>) 

Yi(P) 

Y„(p) 
0 bl2{p) ... bln(P) 
b2l (p)    0 ... b2„ (p) 

h\ 0>)     *(s(rt ••• l>ln(P) 

bns(P)    b„2(p)...0 

Ci2    C(3   ... C\n 

0      C23  •. . C2n 

\cn\   cn2 Cn3 ... 0 

(2.15a) 
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Some particular cases of the general equation (2.15) are given in the 
following: 

(a)   the equation of an ordinary multivariable control system (coupling 
through the controlled object only) 

AoY^K^ + DF; (2.16) 

(b)   the equation of a multidimensional servosystem (coupling through 
the measuring elements only,  i.e., a*,(p) =ßft;(p) =0) 

Af = KmKtl + CYKl + DF, 

where 

m— 

c21 

Cj2 

«22 ■ • c2n 

Cfll Ct\2 ■ • a,in 

(2.17) 

(2.18) 

(c)   the equation of a control system with load coupling (aw (p) = rhi(p) =0) 

AkY = KmYx, + DF + BF, (2.19) 

where 

a„   0     0...0 
0      a„   0...0 

...    0...a„, 

is a diagonal matrix. 
An interesting particular case is that of controlled variables with 

identical control subsystems and symmetric coupling,  i.e., aii{p)=ah\i{p) and 
aik(p)=ahi(p).    The matrix A is symmetric in this case,  and the matrix Ak 

may be written as 

where 

and 

At = a(p)E, 

a(p) = au(p) = a22(p) .. 

10   ... o 
oi   ... o 

(2.20) 

-■a-nAP) 

o   1 
(2.21) 

is the identity matrix. 
From (2.15), (2.16),  (2.17),  and (2.19) we obtain the respective matrix 

equations for the different cases. 
The general case: 

V = A-'[Kmr,el+DF + BF + CYtef]. (2.22) 
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The case of an ordinary multivariable system: 

Y = A^\Kl«Y,e!+DF\. 

Multidimensional servosystem: 

Y = A->[KK,y,c! + Cy,t! + DF). 

Load-coupled control system: 

Y = A^[K«,<r,Cf+DF+BF}. 

(2.23) 

(2.24) 

(2.25) 

In order to obtain equations in Laplace transforms,  the inverse matrices 
A~', i4rö', A*1    should be found in explicit form for each controlled variable. 
We know from matrix theory that the inverse of a matrix is found in the 
following way: 

1. The given matrix is transposed,  i.e.,  its rows and columns are 
interchanged. 

2. Each element of the transpose is replaced with its minor. 
3. Each element in the matrix from 2 is divided by the determinant 

value of the system. 
4. Each element of the matrix from 3 is assigned the sign (-l)i+j, 

where (' is the row number and / the column number of that element. 
We now proceed to determine the inverse A~l.    First we write the 

transpose 
an (p)    a2, (p)    «si (p) ••• "„, (p) 
«u(/>)    «as(P)    "S2(p) ... am(p) 

AP)    a^Ap)    a*Ap) ... a„3(p) 
Ar- 

"H (p)    <ht (n) ••• a„i(p) 

"i/i (P) Ap) • • ann (p) 

(2.2 6) 

and the determinant 

A = 

"n(P) a„(p) ... a,n(p) 
<*2i (P) an(P) ■■■ a™(P) 

"n (p) ai2 (p) ... aln (p) 

"nl (P) "m (P) ■■■ "nn (P) 

(2.27) 

The minors of the elements of the transpose (2.26) with appropriate 
algebraic signs (the so-called cofactors) are denoted by Aij(p); here Atj(p) 
is the determinant of the transpose with the i-th row and the /-th column 
crossed out, and its sign is (-1)1'*-*. 

The inverse A~l is thus written in the form 

A'1-! 

*n(p) 

— Au(.p) 

— An(P) 
A„ (p) 

<-l)'+,.4,,0>>    (~nMA2l(p) 

(-D"+1 ^, 0>)   (-1)"+2A»0>) 

...(-iy+1Anl(p) 

...(-l)"+2AM(p) 

... (-1)'-" Anl{p) 

Ann(P) 

(2.28) 

The matrices Aä1 and .A*1 are obtained similarly. 
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We now write in explicit form the expressions in brackets in (2.22) 
In our nomenclature, 

KJTrt+DF = 

K|torK,™f (/>) + £,, (/>)/, (p) 
K2 t„,K2 ref (p) -f g22 (p) f2 (p) 

BF = 

K„ mtYn ,cf(p) -f gnn (p) fn (p) 

>>n(p)f,(p)+l>i2(p)f2(p)+ ... + bln(p)f„(p) 

*2i (P) /. (P) + b32 (P) f2(p)+ ■■■ + b2n (p) f„ (p) 

CY,. 

*«l (P) f\ (P) + *n> GO A GO +  ■■■  + bm (p) fn (p) 

0 + c12(p)Y2,e!(p) + cl3(p)y3,e,(p)+ ... +c,„(p)YnKt(p) 

c2x (P) Y,,a(p) + 0 + c23(p) Y,K,(p) + ... + c2n(p) Y„,e!(p) 

(2.29) 

(2.30) 

(2.31) 

««1 GO Y\,a(p) + cn2(p) Y2K,(p) +...+c„,„_l(p)rn_ttet(p) + 0 

Substituting from (2.28),  (2.29),  (2.30),  and (2.31) in (2.22),  we find 

A. GO -A2l(p) ... (-\),+nA„,(p) 
-Al2(p) A22(p) ...(-l)2+"4.aG0 Y-T 

(-\)n+i AXn(P),        A2n(p)... Ann (P) 

X 

X 

K,ioiYiK,(p) + gu (p) f^p) 

K2 wt Y, rrf (p) -f- g22 (p) /2 (p) + 
KniotYn,et(p) + g„n (P)fn (p) 

*n GO fx(P) + t>n(p) f2(p)+ ... +b,„{p)f„(p) 
*2i G) /1 (p) + b2i (p) f,(p)+ ... + b2n (p) /„(p) 

*«i GO /. (P) + b„2 (p) f,(p)+ ... + b„„ (p) fn (p) 

0 + cl2(p)Y2,«(p)+ ... +cln(p)Ynt*{p) 
£»1 GO K, ™f GO + 0 + ... + c2n (P) Y„n,(p) 

+ 

+ (2.32) 

CnAp)YUd(p)+  ... +Cn,n-AP)Y„,t,(p) + 0 

Multiplying, we obtain for the matrix of the controlled variables 

y=- 

2 <-')'+I An GO {Klfjrln,(p) + gll [p)ft GO] 

2 (-D'+2 A2 GO IK, „r, ,JP) + gu GO ft (p)] 

2 <-»'+" ^. CP) [*, „r, refGO + g„ (P) fl (P)\ 

+ 

+ 

|[(-1)'H\wiil]i,w/,w] 

2 \(-»i+j 

1.1 L ^"»S'i.WAü') 

i[(-i)"+iA„G)2»;j(/,)/t(p)j 

2 [(-i)'+] -4,-, G) 2 c^ip) rtKl{p)] 

2 [(-I)'+%GO i; C,AGO>W/O 
-'=1 *=i 

2 T(-l)' + " i4|, GO 2 «» </» J'» ref Gol 
'=i L *=i J 

(2.33) 
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The matrix equation (2.33) can be partitioned to n equations in n controlled 
variables.    These are obtained by equating the corresponding rows of the 
matrices in the right- and the left-hand sides of (2.33).    The equation of 
any /-th controlled variable thus takes the form 

Y> = TI 2 (-V'
+
'
A

U\P) lK,„r, «,(/>)+*„ (P) fi (P)) + 
n   I" n 

+ 2   (-V!+JAij(P)%blk(p)fk(p) 

1 (-\rlAii(p)YtclAP)Yl!,AP) 
*=1 
f+1 

(2.34) 

Equation (2.34) is the most general expression for the /-th controlled 
variable in a system where the variables are coupled through the plant, 
the loads,  and the measuring devices, but each variable is regulated by 
a single-loop subsystem.    Let us consider some particular cases of 
this general equation. 

(a)   Ordinary multivariable control systems, where the coupling 
between the controlled variables is conditioned by the plant only.    The 
equation of the /-th controlled variable in this case is easily obtained 
from (2.34) putting bih(p) =cih(p) =0: 

y>° = i 2 (-1)'*' A«! W \KimY<UP)+gu (P) f, (/>)!• (2.35) 

Here A0 and A0ii are obtained from A and A on substituting rih= 0. 
(b)   Multidimensional servosystems.    The equation for the /-th controlled 

variable of one of the servos in a multidimensional servosystem is obtained 
from (2.34) by putting  bik(p) = 0 and  an,(p)= 0: 

2 (-l)'+y Aml/ (p) \K,„Ytref (p)+gu (p) f> lp)] + 

+ Yi(-\)'
+lAmi(p)^iclkYk 

where 

Am= 

;= l * = 1 

"n c,2 . ■ Cm 
C21 a22 . • c2n 

e«i 

(2.36) 

(2.37) 

and Amij are the cofactors of the corresponding elements in the determinant 
(2.37)*. 

(c)   Ordinary combined control system.    We have already stressed that 
if the operators bik(p) are appropriately chosen,  equation (2.34) can be 
made to represent the /-th controlled variable in a multivariable combined- 
control system.    In an ordinary combined control system, load signals, 

*      The subscript m ,j indicates that the cofactor pertains to the element ij of the matrix of the multi- 
dimensional servosystem. 
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as well as the monitored deviation,  are used as controlling factors.    The 
equation for a combined control system with a single controlled variable 
is obtained without difficulty by putting i= 1, Atj= 0,  and cih= 0 in (2.34). 
If now the system comprises several control loops which are load-coupled 
in the sense that the loads of the different loops are employed to improve 
the quality of each subsystem,  the general equation is obtained from (2.34) 
by the above-mentioned substitution: 

rn(/») = ^{A„k(P)\KjtoyhAp) + gjj(P)f,(/>)] + Am(/>)%bj»(P)fAP)\. (2.38) 

where 

A* = 

«ii    0    ...0 
0      fl2s ... 0 

Having considered the various equations of multivariable control systems, 
we now proceed to discuss their operating conditions. 

§2.4.    STEADY-STATE OPERATION 

We will derive a matrix equation for steady-state operation and establish 
some general properties of multivariable control systems under steady- 
state conditions.    Remember that for the time being we are dealing with 
multivariable systems with single-loop subsystems. 

The steady-state equation can be obtained from (2.15) by putting p= 0. 
In explicit form, the equation for any /-th controlled variable under steady- 
state conditions is written from (2.34) as 

K/(°)=irUl(-1)'+yAj(O)K«i'„t((0)+g„.(0)M0)] + 

S   (-D,+yi4y (0)2 »„(0)^(0) 

+s (-l)'+M,,(0)2c„(0)KJref(0) (2.39) 

It is readily seen that delay elements,  if present,  do not influence the 
steady-state operation of the system,  since lim ex" = 1. 

P-KI 

Let m out of the total n control loops be integral, while the remaining 
n—m loops are proportional.    A single-loop system is called integral if and 
only if it contains at least one integrating (floating) controller /4, 5/.    In 
proportional systems, the controller contains no integrating (floating) 
elements. 
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Let the elements be enumerated in such a way that the first m subscripts 
refer to integral subsystems.    Then 

(* = 1, 2, .. lim akk(p) = Kklm 
p-*0 

Hma„(/>)=l+*„ (* = «+l, 

\\makl(p) = K„xmrkl (£=1,2,.. 
p~*0 

lim a„, (p) = Kkaki (0) + A"*t„,r4(     (* = m + 1, 
p-»0 

WmjM(p) = 0 (*=1. 2, .. 
P-»O 

Kmgkk(p) = Kk (k = m+\, 
p->d 

limbkt (jf) = 0 
p-K> 

lIm*w(/») = Ä,
4ßJM(ö). 

OT), 

., «), 

m), 

., «). 

m), 

., «), 

(*=1 /«), 

(k = m+ 1, .... re). 

(2.40) 

We now proceed to determine the /-th controlled variable in two limiting 
cases: all the subsystems are integral (case 1), or they are all proportional 
(case 2).    In case 1 we have m=n,  and in case 2 m= 0. 

In case 1,  the various elements in equation (2.39) are written in explicit 
form 

Kltot K\totrl2  ••• Klttxrln 

A2tot'*2l     ^2 tot       ••• Kiiotfln 
A,= 

Kn tot'Vil       ■ • • • • • *vi tot 

g„(0) = 0,   *„<0) = 0. 
«*,(0) = A'ttotr4(. 

(2.41) 

The transpose in this case is 

At(0) 
Al tor '<2toi''ai   •••  Kntotrn\ 

^ltot^ia     ^2tot        • • • A/i tot/'/l2 

I Aitot'*i/i    A2tot'"2i ••• *V/itot 

Inserting (2.41) in (2.39) and making use of (2.42), we find 

n r " 
^(P)=-5rS(-»,+y^y(P) AritoIr/ref+2^(0)Kre 

L *+i 

If the measuring elements are uncoupled, we have 

(2.42) 

(2.43) 

A, — Aü 

Km o       0...0 
0 Katoi   0 ... 0 

10,(0)= 

Kttot 0 0 

0 
0 

fy-not 0 

Ky+itot 

0 
0 

to tot 

K| tot 

0 
0 

^2tot 

0 
0 

0 0 K/itot 

^,o,^(0) = r/„f(0). 
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We thus arrive at the following remarkable conclusion; if the subsystems 
are all integral,  the steady-state value of a given controlled variable is 
indeoendent of its own load and of the load of the other subsystems; it is 
furthermore independent of the other controlled variables (although without 
control,  all the variables are plant- and load-coupled),  depending only on 
the artificially introduced coupling coefficients between the measuring 
elements, which in a sense alter only the reference value.    If the measuring 
elements are uncoupled,  the controlled variable is equal to its reference 
value.    This result can be alternatively stated as follows: if all the sub- 
systems are integral,  the controlled variables are independent in the 
steady-state and the system is said to be  statically   n on in t e r a c t in g *. 

If, however, the measuring devices are coupled,  the steady-state value 
of each controlled variable is dependent not only on its own reference value 
but also on the reference values of all the other variables. 

Let us now consider the case of proportional subsystems,  assuming that 
the controlled object does not contain integrating elements either.    The 
system determinant is written as 

1 + Ki.ot Kia,2(0)+ /<„„,/•,, ... *,<«„, <0) + Ki,o,r„, 

K/aj, (0) + K]mrn ... KjaJn (0) + KJmrJa (2 .44) 

The transpose Als under steady-state conditions is 

1+Kltor K/VlW + ZW;,     •••  K0nl(O)+Knv>fn< 

K,a,„m + Klmrln    KjajnQ) + Kja<rj„ ... l + Kntm 

(2.45) 

Equation (2.39) is thus rewritten as 
n | 

Yi'(0) = T7li(-D'+yAu(0) Ktjr,,e,(0)+gu(0)/(0) + 

n n 

+ 5><*(0)M0)+ 2<^Sref(0) (2.46) 

Each Atj is the determinant (2.44) with one row and one column crossed 
out.    The degree of the determinant in the numerator of (2.46) is thus 
always one less than the degree of the determinant As. 

It is easily seen that as the controller gain K increases indefinitely, 
we have 

lim   YJt(0) = Vj,A0)+ S rlkVblef(Q). (2.47) 

This increase in gain is of course permissible only if the system 
retains its stability. 

Thus,  if the gain Ki,m of each control loop is increased by increasing 
the corresponding controller gain,  each controlled variable in the limit 

The general case of nonimeracting (autonomous) systems is treated in a special section of Chapter Si: 
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is equal to its reference value, appropriately modified by introduction 
of artificial coupling between the measuring elements; it is thus independent 
of the other controlled variables and loads.    If the measuring elements are 
uncoupled, we have 

lim   Yj.(P) = V]n!l(p). (2.48) 
ft_/tot~ 

From (2.4 6) and the values of the elements entering equation (2.4 6) 
we see that if the coefficients Kjwt are finite, the individual controlled 
variables are coupled, but the interdependence diminishes as the gain 
factors of the individual controllers increase. 

If all the plant and controller parameters are known,  equation (2.46) 
can be applied to determine the steady-state value of the controlled variable 
and hence to establish the relationship between the controlled variable 
and the load. 

As an example, we calculate the steady-state value of,  say, the 
second controlled variable in a three-variable system: 

r2s(0) = Ä7 S (-D'+2 An(0)  KtjrM<® + 

+ ft,(ö)/,(0) + S*/*(«)/.+ S^rtrcf(0)   . (2.49) 
* = 1 

From (2.40) we have 

A,= 

A, = 

■"32   

l+Knot /CiOi,(0)+ACltotr„(0)   K,a13(0) + Kno,r]3 (0) 
A>2, (0)+K,mr„ (0)   l+K,m K2a23(0) + K2m,r23(0) 
K3a3i (0) + K„„tr„ (0)   K3a32 (0) + K3mr32 (0)   1 + K,m 

1 + Kuoi Kio,(0) + K,mrtl{0)   Ar,o3,(0)+/fs.o.r„(0) 
/Cia„(0) + A:ltotr„(0)   l+K,m K3a31(.0)+K3lNr31(0) 
/C1a13(0)+/C,IO,r,3(0) K2<i23(0)+K2mr23(0)  l + K,m 

_ I Kia,s (0) +K,mr„ (0)   K3a32 (0) + K3,„,r32 (0) I 
Uia„(0)+/C,K,,r1j(0)   \ + K»m I' 

1 + Kt ,ot K&si (0) + K3t0,r3l (0) I 
Ar1o1,(0)+/fltotr„(0)   \ + K,m I' 

1 /C,a12(0)+A:„o.'-1J(0)   1 + /C„„, I 
AC,a13 (0) + /C„o,r„ (Ü)   K2v.23 (0) + K„„r„ (0) | - 

(2.50) 

(2.51) 

Inserting the appropriate numerical values, we obtain y2s. 
From (2.49) we see that, by introducing additional load coupling, we 

may achieve any desired variation of the steady-state controlled variable 
as a function of load.    Note that the number of disturbances or loads need 
not be equal to the number of controlled variables; furthermore,  introduction 
of a certain number of disturbing factors in addition to the already existing 
disturbances in the system does not involve any fundamental difficulties. 

Let us now consider the general case,  when some of the subsystems 
are integral and the others are proportional.    In our example of a three- 
variable system, we assume that Y2 is under integral control.    The coupling 
between the measuring elements is ignored,  since it is artificially intro- 
duced into the system and only alters the reference value of the controlled 
variable. 
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We thus operate under the following conditions: 

r„(0) = 0,   ^(0) =0,   ga(0) = 0, 
«a(0) = tfait<>„   fta(0) = 0. 

Making use of (2.52), we write 

(2.52) 

y» (0)= 

*■     v     m\l ^ + fitot   Ktal3(0) 
A2tot'siref(")     „ ,   ,, 1 A:3a3i (0)    l + #„tM 

1 + Knot 
0 

^«3, (0) 

0 

0 

*1«1|3(0) 

0 

1 + /Girat 

= y2,cf(0). (2.53) 

Thus, under steady-state conditions, the integral variables are load- 
independent and do not interact with other controlled variables,  despite 
the plant-coupling.    The only case when disturbances may alter the integral 
controlled variable is if they are mixed with the reference value; however, 
in steady-state conditions the additional signal causes an equivalent change 
in the reference signal. 

We now establish the interaction of integral variables with proportional 
variables.    Suppose that in our three-variable case,  the second and third 
variables are integral, while the first variable is proportional.    The 
equation of the first controlled variable (again ignoring the transducer 
coupling) according to (2.49) is 

3 I 3 1 
ri.(0)=^2(-l)'+Mn(0)U<.o,^f(0)+^(0)/K0) + 26/s(0)/s(0)   . (2.54) 

'=> I *=i J 

Substituting for the elements in (2.54), we find 

1 <\    Kn... 0 r„(0) = r l + ATi,<,t   /f,a,2 (0) K,al3 (0) 
0 *,,„, 0 

+ K, (ß„/, (0) + plä/2 (0) + ß13/3 (0))] 

lKlmr¥c,+K1fl(0)+ 

AT,o,2 (0)       0 

K>ai3(0)   K3m 
[K2 tot^Stef] + 

K,al3 (0)       0 [Ks, Jt^Kef] |. (2.55) 

After simple manipulations, we obtain 

+ ß13/.(0)] --1+^to [«„.(0) K,wf+olay,«,J. (2.55a) 

The physical meaning of the components in equation (2.55a) is obvious: 
the first term in the right-hand side corresponds to proportional control 
of the given variable, when considered separately, the second and third 
terms represent the effect of the variable's own load and of the additional 
load of this and other variables introduced through the transducer ßift; 
the last term describes the effect of the extraneous reference values on 
the steady-state value of the controlled variable.    From equation (2.55a) 
it is also easily seen that the effect of the other controlled variables and 
their loads in the steady-state conditions increases with the increase in 
plant gain and decreases with the increase in the gain parameter of the 
controller or the proportional control loop. 
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In conclusion of this section, we consider the case when the transfer 
functions of the plant and the controllers are identically equal for all the 
variables.   We shall try to establish the behavior of this system under 
steady-state conditions.    Since all the subsystems are identical,  they 
are all either proportional or integral.    The case of integral subsystems 
is of no significance for our analysis,  since as we have shown in the 
preceding for a more general case, the subsystems are independent under 
steady-state conditions. 

We thus consider the case of proportional subsystems,  remembering 
that subsystem transfer functions and the coupling coefficients determined 
by the plant properties are respectively equal to one another.    In this 
case the matrix A is equal to its transpose At and is symmetrical: a.ih(p) = 
=0(,i(p), where I and k are subscripts pertaining to any controlled variable; 
a« (p) = Okh (p),   ai} (p) = a*, (p). 

Let us consider the case of an ordinary multivariable control system, 
ignoring load- and transducer-coupling. 

The matrix A in this case is 

-A« = 

iiii, a   a        ... a 

a öj2' a ■ • ■ a 

a a ... a (2.56) 

The cofactors of all the diagonal elements in (2.56) are obviously equal, 
i.e.,   Au=Ajj,  and they all have the sign plus.    We can also prove the 
following proposition: 

The cofactors of all the other elements in the matrix (2.56) are also 
equal to one another, but have the sign minus. 

Indeed,  since all the nondiagonal elements of the matrix (2.56) are 
equal to one another and the diagonal elements are also equal to one another, 
the cofactors of any two adjoining nondiagonal elements will coincide if 
the corresponding pair of rows and columns is interchanged in one of the 
cofactors.    This operation, however, will reverse the sign of the cofactor, 
but since the cofactors of two adjoining elements have different signs,  it 
is clear that in virtue of symmetry the cofactors are equal in magnitude and 
in sign.    This proves the first half of the proposition. 

We will now show that all the cofactors reduced to identical form have 
the sign minus.    It suffices to show that at least one of the cofactors has 
the sign minus.    Consider the cofactor of an element adjoining a diagonal 
element.    Since the cofactor of a diagonal element always has the sign plus, 
the cofactor of an adjoining nondiagonal element must inevitably have the 
sign minus, which completes the proof. 

Making use of the above conditions and the symmetry of the matrix, 
we obtain from the general equation (2.34) the following expression of 
the /-th controlled variable: 

rj = -Td{Ajj(P)Wi«i(P)+gii(P)fj(P)\- 

-(n-\)AJ+l[Kj+^ymK,(P)+gjj(P)fj(P)]}- (2.57) 
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Since all the reference values are equal,  equation (2.57) can be written as 

K,-IW|.«+fa(/»)/,(/>)I '"W-fr-1M"" W - 

-\K,mY,*r±gnU)f,{p)\ aji(p)An(P)-(n-l)ai,1+lip)Aj,l+t(py (2"58) 

The analysis of the system is considerably simplified in this case. 
Indeed, the stability of the entire system is determined by the position 
of the roots of the denominator in (2.58) 

aii(p)Ajj(p)-(n-\)ajij+l(p)A1}J+1(p)=0 (2.58a) 

relative to the imaginary axis.    It is easily seen that equation (2.58a) can 
be reduced to the following form:* 

K (P) - % 7+1 (/?)]""' K + (« - 1)«;. ,+i (p)\ = 0. 

It thus suffices to investigate two equations of a much simpler form, 
namely 

ajj(P)-aj.J+AP) = 0 

and 
ajj + (n-\)aJfJ+l(p) = 0. 

This approach to stability is very attractive, since the order of the 
equations to be investigated is equal to the order of the subsystem. It 
should however be kept in mind that the results should further be tested 
for coarseness in the sense of A.A. Andronov. This test is particularly 
important in our case, since the smallest deviation from homogeneity 
will markedly increase the order of the equation to be investigated for 
stability. 

Under steady-state conditions,  equation (2.58) takes the form 

K„(0) = lV/ret(0) +gjy (0)/ (0)] (i +/(yM,)X?u)-(;nl^l^w^.^, (0) •     (2-59) 

§2.5.    ERRORS IN MULTIVARIABLE CONTROL 
SYSTEMS WITH BASIC ELEMENTS 

We resume our discussion of multivariable control systems with sub- 
systems made up of basic elements in single-loop configuration. 

We introduce the concept of an error matrix in the general case of 
a multivariable control system.    The definition is analogous to that 
proposed for multidimensional servosystems /80/.    The elements of the 
error matrix X are defined as Xt = K,ref — Y,.    Eliminating Yt and Y\ between 

*     This result is due to A. A. Krasovskii /23/. 
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(2.7) and (2.10) and seeing that Yl = Yi,s.f-Xi, we obtain the following 
expressions for Xt; 

[D, (p) Q, (p) R (p) eV+KfaMA X,(P) + 

+  KfoQ, (P) 2 a,* (p) - nA (p) Q, (p) ex'p £■ rlt (p) x„u>)-- 

= p,D, (P) Q, (P) er'pyt re( (p) + Kfifi, (P) S a„ (p) K, ret (/>) + 
**' 

+KP,QI(P)MP)     (/ = l. 2. ...,«). 

Our aim is to write equation (2.60) in matrix form.    We put 

A (/>) Q, (P) R, (P) ex<" + KJdMi = an (/>). ] 
V-1Dl(P)Qi(P)er"' = ^(p), 

(2.60) 

(2.61) 

In this notation,  equations (2.60) can be written in the matrix form 
as follows: 

AX = BYKl + CF, 

where 

A = 

<*n (p) Vl (P) "12 (/>) — • • • Yl (P) «in (P) — 

-ii{P)r\*(P) —ii(p)nn(.P) 
Y2 (P) «21 (P) — «22 (p) • • • Ya (P) Oj„ (p) — 

— C> (p) r„ (p) — £2 (P) rin (P) 

Yn (p) O/il (p)— 

— C/I(P)''/II(P) 

Eid») Yi(p)<*i2(p)   ■■• Yi(P)<*in(P) 

Y2(P)«2l(P)    Sa(P) • • ■ Y2 (P) <*m (P) 

YB(P)««(P)   Yn(P)<Wp) ••• Ca(P) 

C-- 
Yi(p)   0 ... 0 
0 y,(p) ... 0 

X = 

0 ... Y„(p) 

r, ,ef (p) 
J'jref(p) 

F = 

I let   

A(P) 

/«(/>) 

J'/lreflP) 

From (2.62) we obtain the error matrix 

X = A-'{BYKf + CF\. 

(2.62) 

(2.63) 

(2.64) 

(2.65) 

(2.66) 

(2.67) 

(2.68) 
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The matrix A can be written as a product of two matrices 

«..(/>) o        ... 0 
0 a12(p) ... 0 

0 
X 

1       «,a ... «M 

«21    1      ... Rin 

where 

"in 

^?21 

1 ••• ann(p) 

_ Yi(p)<Xi2(p) — £i(p)ri;(p) 
12 «n (p) 

. Yi(rt°iB(rt —ti^r^tp) 
«11 (P) 

\2{p)<*2i(P) — (,2(p)r2l(p) 
a12 (p) 

1 

p   _ Ya (p) aan (p) — J2 (p) r,„ (p) 

p    _ Y/i (P) n„i (p) — £„ (/?) /•„! (p) 

*"1_ a„(/») 

are likewise for the matrix B 

5 = 

1 

Ya (p) «ai (p) 

£.<P) 

Yi(p)a,j(p) 

1 

Yi(P)o,„(p) 
'        U(P) 

Ya(p)a2„(/>) 
'        in(P) X 

S.<P)   0 
0           £2(p) • 

0           0 

.. 0 

.. 0 

Yn (p) a«i (p) ... 1 
•• UP 

&</>) 

Making use of (2.59), we write the inverse A~lin the form 

_ 1 
1        /?i2 ...  AM fl- 1 
Aal 1     . 

• ^?M 

• ^?2n 

-1 

X 

—V^r         0        ... 
«11 (p) 

0            * 

0 

0 
flja(p) '" 

..     1 "rtl 

0            0      ... 1 
'"'  ann(p) 

Substituting (2.70) and (2.71) in (2.68), we obtain 
1 

x = \\ 

X 

R\n 

1 

Ya (P) aai (p) 

Ci(P) 

X 

«ii (P) 

0 
«aa (P) 

0 
«™(P) 

Yi (P) Qia (P) Yi (P) «M (P) 
t»(P) 

X 

1 

in(P) 
Ya (P) «an (p) 

Y«(p)ani(p) 
Ci(P) 

C. (P)   0 ... 0 

0 {,(/») ... 0 

o       o     '..'. UP) 

Yi(P) 

X 

^lrcf 

J'jtcf 

'nrel 

+ 

MP) 

l 

1 /?u   ...    Rif 

/?2.      1    ... R„ 

X 

X 

X 

«11 (p) 

o 

o 

Ya(p) 
«22 (p) 

0 

0 

y„(p) 
«™ (P) 

X 

/. (P) » 
flip) 

\fn(p) 

(2.69) 

(2.70) 

(2.71) 

(2.72) 
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Consider the first term in (2.72).    It determines the dynamic properties 
of a multivariable system without load and of systems where the transient 
process is initiated by a disturbance at all the subsystem inputs or, 
equivalently, by application of the reference values yiref(p) to the system inputs. 

Consider an isolated, noninteracting system.    Its transfer function can 
be obtained by putting aih(p) =/"«(p)=0,  and in our particular case f4(p)=0. 
Thus 

X,(p)- au{p)Yi<« (/>)• (2.73) 

We will now determine the system error.    From the properties of Laplace 
transformation we know that 

lim x(t) = limp -LL-V cf(p). 
<-»ra p-*0      adKP) 

(2.74) 

Let j/,-ref(/)be a step function,  then 

Vi, 
Kiref(0) 

Thus 

/™*w=£wr-(0)- 

Here MO) 
«ii (0) 

is the proportional or the zeroth error.    If the system is integral 

Al     i A2    , 

to a certain degree, errors of higher order can be obtained. 
Let the respective errors of isolated, noninteracting systems be 

Kh   > where the subscript identifies the system and the 
superscript is the order of the system error*. 

We now return to the first term in (2.72) and postmultiply it by the 
identity matrix 

£ = ««->, (2.75) 

where 
1 

«n (/>) 

a22 (p) 

0 
"nn(P) 

(2.76) 

Making use of the peculiar property of the inverse of a diagonal matrix, 
we write the first term from (2.72) in the form 

X = 

Vi (p)ain(P) — t\(.P)rin(p) 
"H (P) 

Vn(P)ain(p) — tn(p) rnl (p) 
0/m (P) 

X 

The order of the error is determined by the degree of integral action of the system. 
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X 

1 
«n(/>) 

1 
a22 (p) 

0 0 1 
«/in (p) 

X 

! Vi (P) «12 (p) y>(p)ain(p) 
u (p)     • • •     c (p) 

V«(j»)gaiO>) , Ya (p) a2„ (p) 1 

Yn (p) a«i (p) 
£■(/-) 

X 

«ii (p)       o     ...      0 

0       a22(p) ...       0 

0 0      ... a„„(p) 

X 

^1 rcf 

J'n n-f 

X 

e.(p)     0 
«n(P> 

0 tiW 
a22 (p) 

in(P) 

1 

0 

0 

X 

(2.77) 

0     ...MELI 

Under steady-state conditions,  equation (2.77) can be written as 

|    1 ./?I2   . .  /?.„ 
lim x (t) = 

1 "ni /?/l2   • .    1 

l 
0 

1 

0 

0 

«ii (0) 

0 
a22(0)   • 

0 0 
1 

•   oM(0) 

X 

X 

,            Y, (0)a,2(0) 
S» (0) 

Vi(0)a,„(0) 
"     £»(0) 

Y„(0)a„,(0) 
Ci(0) 

X 

a,,(0)      0     ...     0 
0      a22(0) ...     0 

X 

K[s>>     0       0 

0      /£'■>     0 

0 0     ...a„„(0) 

J'lrc-fW 

X 

.. K, (
s«) 

X 

K„«,(0) 

(2.78) 

where 

/?,„ — Yi (0)a,s(0)- -Ci(0)r, .(0) 
«ii (0) 1 

A>.  — Yi (0)a,„(0)- -Si(0)r B(0) J\i/i 
«i (0) 

°nl 
Yn ,(0) aBI (0) -Sn(0)r„,(0) 

The expression 

K = 
1        /?12   ...   R\n 

Rn\    RJI2 • • •    1 

1     ' 0 

1 

0 
on (0) 

0 
0 

a22(0)   • 

0 0 
1 

'   <*™(0) 

X 

Vi(0)a»(0)        Y|g|«(0) 
4i(0)      '•'    £»(0) 

X 
Yn (0) "„I (0) 

£.(0) 

X 

«il (0)        0      ...      0 
0       a22(0) ...      0 

0 0     ..'.   a„„(0) 
X 

*}*■>      0        0 
0     KlSl)      0 

0        0     K i
sn) 

(2.79) 
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is the  generalized   error   matrix.    In the case 

Qi{V) = Kn„   E,(0) = n(,   t-n,    and   au*=l+'K,„. 

the generalized error matrix takes the form 

*>!«!/; — Hl^in 

1+/C1; 

Kn\>-tfln\— WnX 

X 

1 4" Kn tot 

1        /Cja,, . ..   #,<»„, 
/C2O21         1     . ■ • K2ain 

1 + K1, 

^na«l     ^wi<»/!2 •••      1 

X 

1+K.tot 0 
0      i+Ktm 

X 

1 

0 
0 

...  l+Kn 
X 

0 *f>     0 
0     Kf ...    0 

0    0  ... K<
0) 

(2.80) 

It should be remembered that the coefficients o« and /•« enter the matrix 
with their respective signs. 

The generalized error matrix is thus a product of two matrices dependent 
on the coupling coefficients alk and ra and a third matrix — the error matrix 
of the noninteracting subsystems. 

Consider the following example.    Determine the error matrix of two 
systems coupled through the plant and the measuring devices and establish 
the equivalent errors for each interacting subsystem. 

We have 

Ko = 

KiV-\*\t — t»ir» 

1 + Ki tot 

1 + K2 tot 

1 

l-}-Ki tot 

0 

X 
1      /C,ct12 H|| l+AT, 

K&n      1 I + K2 
X 

1 + Kj tot 

*<">     0 

X 

0    KP» • 
(2.81) 

The inverse preceding the first factor in (2.81) can be found in explicit 
form.    The transpose in our case is 

*T = 

^2M-2g21 —l*2f21 

/Cili|g|2 — Hir12 

1 + f 1 tot 

1 + ^2 tot 

1 

The determinant of the system is 

1 ^ClHlOl2 — l*lr12 

1-t-fltot 

^2^2^21 — ^g^*ai i 

1 -|" Ki tot 

_ 1     (*>i<>i2 — V-ir,,) (Ki^an — H2rä|) 
— (i+Ki,«)(i+*.,„.) 

The inverse may therefore be written as 

1 ^CiHiQia — ^iflg 

l + K„o,[l-«j.] 

(l + KIt„,[l-/?„]) 
1 

l-«.i 

(2.82) 
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where 
D   .__ (Kifian — Hi^ia) (K2H2«2i — M2r2l) 
^»— (l + A:lK>I)(l + /C„o,) 

n   _ (KiHiCiü — Hirn) (/(2n2ct2i — n2r8i) 
«U— (1+ *,,„,) (1 + Ki.o.) 

*«— (l + /C,,o,)(l+ *„„,) 

n   _ (ftil*i<»ii — I^Iü) (AT2H2g2i — Hair2i) 
*»- (1 + K„„,)(1+ *,,„) 

This inverse is now multiplied successively by the matrices on its right in 
equation (2.81).    Having performed the multiplication, we find 

HIS: £1- (2-83) 
where 

K 2i  
11       ,      (KiHiQi; —Hir-2)(A:2|i2a2i—n2r2i) 

(I+K1.0.KI+/C.0.) 

11  *•,     [1       (/CiM-i<»ia — M-i/~ig) (K2H2g2i — n2r2.) 1 +Ä,,n1        (H-JC.„)(I+/C,„)—J 
1    > 12 TXT 

«12 =  (/CiHia12 —Hiri2)(/C2naa2i — n2r2|)  ~~*~ 

H *(.0)[A:1lt1a12-n1r12] 
1J-A-       l"i       <^<"iM-i«ia — l*ir12) (AT2n2a21 — nar2l)1 ' 

^ /C^tATs^a;! —n2r2,]  

(I+*I.O.)(I+A:»,O.) 

A202 !l i+*,„ 
I tot 

4- K<fl) ■    ---  2    .      (K.Hia^ —Hi-ri2)(/C2n2a2l—n2r2|) 
(l+A:.,o,)(l + /C2t„,) 

KV»K    <»12(t+^itot) ,v ,.  - ,,  .   \ A2 "1     1 _i_y (Aji^rji —IVJ,) tf    ._ * ~T *M tot  
22       14.?.     l"i      (*il»i<»» — l»iri2) (ft2|*2a21 — nar2i)1 

 *£>  
j      (/?iHia[2 — narl2) — (/C2M2a2i — n2r31) 

O+ZCltotXl+^to.) 

Matrix (2.83) is the error matrix of a two-variable system inexplicit form. 
In particular,  if the subsystems are uncoupled, we have an=an =r12=r21=0 

and (2.83) takes the form 

v     II *'0)    °   II 
*H 0  4°' ■ (2-84) 
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From (2.83) and (2.84) we can estimate the effect of plant- and trans- 
ducer-coupling on the equivalent errors in each subsystem. 

Another interesting case is the error matrix for pure plant coupling 
or pure transducer coupling (and not mixed coupling,  as in the preceding). 
Putting in (2.83) r,2=r2i=0, we obtain the error matrix for a plant-coupled 
two-variable system: 

I KM    /Ci2 

I ^21     K22 || 
(2.85) 

where 

*!!"=- 
*S> 

l — AT|ft2HlH2«12«2l 
+ 

^*i**i^T$fe 

Kn =- 

+*'mL1 _ (i+/c,,o„)(i+^t„,)J 

        iiv      fi KiKiV-ilWi^i     1 
*'  KIa12_l+/Cltot 

K^K^hV^a^ai 

K2i — 
A^%f2«21 

Km = 

. +*it=.)(H 

^2   • ^1^2>*2«12«21 1    1   ■/ 

+ «^TC 
1  1 K     fi /Ciya|ti|i;ai2a2i , ^Ci^C2^il^2g|202| 

"*"     2K"L (1 + K, ■=.)(! + *,.„■) (l+^l,„,)(l+/C2,o„) 

:l+/fl 
1 _L K,        [I >*2al2a21  1 ^Cl^2^I>'2Pl2°2l 
T-'Vo'L       (l+Klm)(l + K,m) (l + fi.o.)(l+%to,) 

In the case of transducer coupling, we put a12=o2i= 0 and obtain from (2.83) 

*-|5:£|. (2-86) 

where 

*n = 
M°> 
^1^2^12^21 

^15 

(l+/Cl,o.)(l+K!tot) 

MV12 

K0\ ="=- 

1    I    j/ fi  M-lM-2rl2^"21 1 
1+ICI ,o, L1— (i+/cIIOt)<i+/c2t„t>J 

/C22 

1   i_ w-      fi ^i^a^n^i ] l+«2tO,[l-(1+/(itot)(1+/(2tot)j 

Kg" 
^11*2^13^*21 

(l + 'Cno1)(l+^2,o,) 

Examination of expressions (2.83), (2.84), (2.85), and (2.86) suggests 
a number of general conclusions for multivariable control systems. 

The diagonal elements of the matrix correspond to the equivalent errors 
of the subsystems, while all the other entries represent the effect of the 
j-th error on the ft-th error. 
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The expressions above indicate that the errors in multivariable systems 
with coupling are essentially different from the errors in uncoupled systems. 
For example,  take the first-loop error.    From (2.83) we have 

„         M,M2 ft-«» _]_&-«» MlNjK^g  (?R7^ 
K»='Al1JM,(/C1*:lli1als-|»,r„)Af» ftl   +Al    MtM2 + Klm (Af.Af, -Nfl,) '        ^-° '' 

where A«, = l+JCi„.    M2 = l+KUm, 

Without coupling Ku = /<?*.    If plant coupling is stronger than transducer 
coupling,  i.e.,  if aik>rik, the equivalent error Ku is greater than Kf\  In 
particular,  pure plant coupling increases the system error. 

Conversely if the coupling coefficient rih can be so chosen that rth>KiCHh, 
an appropriate choice of K2 ,„, will make the error Kn less than M0'. In 
particular,  if no plant coupling is imposed, i.e., aik= 0, appropriate 
choice of the subsystem gains will substantially reduce the errors.    This 
situation obtains in multidimensional servosystems,  which are transducer- 
coupled without plant coupling.    The recently developed so-called control- 
coupled   systems are also classified as multidimensional servosystems. 

Consider a nondiagonal element of the matrix (2.8 6): 

 *¥Wi»  (2.88) 

If the controlled variables are independent,  rih= 0 and all the elements 
with rik vanish.    Furthermore, as we have shown in /39/,  in single-variable 
systems increase of each loop gain lowers the system errors and is thus 
advantageous from this and some other points of view. *   It is clear from 
(2.86) that the nondiagonal elements of the matrix will approach zero as the 
gain of each control loop is increased indefinitely. 

The effect of gain on the dynamic properties of the system is considered in Chapter Four. 
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Chapter Three 

STRUCTURE OF MULTIVARIABLE CONTROL SYSTEMS 

§3.1.    INTRODUCTORY REMARKS 

In the previous chapter we considered multivariable control systems 
with single-loop subsystems made up of basic unidirectional dynamic 
elements.    The philosophy behind this approach was explained in the 
preceding.    In our analysis of these systems we have established that 
with regard to the steady-state error they do not differ from ordinary 
single-loop systems, where an increase in gain improves the accuracy 
however,  even in this simple case there are substantial differences 
between multivariable and single-variable control systems     These 
differences are best illustrated by considering the characteristic equation 

The general transfer function of a closed-loop single-variable system 
without stabilization which is made up of basic dynamic elements in a 
single-loop configuration is given by 

n Kt 
„. , i£ ai(P) 
*(/>) = —4i • (3.1') 

' + 11 \ "i{p) 

where at(p) is the self-operator of an element. Depending on the exact 
nature of the elements in the control loop, ai(p) is a polynomial of first 
second,  or zeroth degree. 

The characteristic equation of the system is written in the form 

&i(P)+K=0, (3.2') 

n 

where K=JlK, is the overall system gain.   In multivariable control systems, 

even those with single-loop subsystems, the characteristic equation is a 
sum of polynomials.    It is clear from Chapter Two that the characteristic 
equation of a multivariable control system can be written as 

Po(P) + fi(Ki)M*n)Pi{p) + h(f<i)P2MPAp)+ ... +M^)p„(a,.„)P„(/>) = 0,     (3.3') 

where ft and Pi are functions of the loop gain factors and functions of the 
coupling coefficients between the individual controlled variables P( are 
functions of the self-operators of the individual subsystems 
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The effects of gain and coupling on system dynamics should be considered 
separately, but regardless of the outcome of this analysis it is clear that 
single-loop configuration does not ensure satisfactory dynamic properties 
in multivariable systems. 

Now, what is the desired structure of multivariable control systems? 
In other words, what should constitute the foundation for the synthesis 
of multivariable control systems?   In our analysis of single-variable 
systems /39/, an optimum system was defined as a system which,  given 
the necessary and sufficient number of simple dynamic elements,  complied 
with the specified technical requirements.    For a very general class of high- 
quality control system,   the problem of synthesis is reduced to the 
determination of structures which  remain stable at arbitrarily large 
gain factors and have an infinite closed-loop positive-response 
bandwidth. 

Let us now consider the case of multivariable control.    The only general 
approach to the problem of synthesis of multivariable control system is 
found in /85/.    The author distinguishes between three so-called canonic 
structures, which differ in the mode of coupling between the individual 
variables, and the synthesis is based on the following two factors: 

(a) R=r — rd, the number of free inputs,  and 
(b)D=rd — n, the number of inputs which may optimize the process (in 

respect to a certain criterion) minus the total number of outputs. 
It is established /85/ that the above data are insufficient for optimum 

synthesis and that some additional information is needed.    This gap is 
filled by certain constraints imposed on the system or by the assumption 
that some of the network elements are known. 

Our approach to the problem is essentially different.    First, the one- 
loop configuration is the only permissible, a priori known structure of the 
starting subsystems; the dynamics of each subsystem is determined by 
the dynamic properties of the measuring devices,  the controlled object 
(in relation to the particular controlled variable), the corresponding 
controller, and the amplifiers.    This choice of the initial structure is 
suggested by the very nature of the control process, and these elements 
always  constitute the initial or the starting control loop. 

Second, there is a possibility of natural coupling,  due to the properties 
of the controlled object or the load.    This may be either direct or cross 
coupling.    Artificial dependence is introduced only if the measuring 
devices are interconnected in a special way to produce a multidimensional 
servosystem.    As regards other types of artificial coupling between 
controllers or special load disturbances introduced to ensure,  say, 
noninteraction and certain desirable dynamic properties, they cannot be 
regarded as known from the start,  since they are inherently the outcome of 
synthesis and not the initial data for synthesis. 

The synthesis of multivariable systems, as that of single-variable 
networks,  is based on a number of requirements. 

1. Each component system,  considered in isolation from the other 
variables,  should allow indefinite increase in gain without losing its stability. 

2. The subsystems should theoretically have an infinite closed-loop 
positive-response bandwidth. 

3. Depending on the properties of the controlled object or the problem 
being considered, we demand that the transient be close to the optimum 
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for each controlled variable or that it meet a certain optimality criterion 
for a generalized parameter representing the set of all controlled variables. 

Thus,  if we know how to build single-variable systems complying with 
given requirements, the synthesis of multivariable systems reduces to the 
determination of the dependence of coupling on system structure for the 
case of subsystems consisting of more than one loop. 

Our analysis will proceed as follows. . First we shall consider the 
synthesis of systems where the individual controlled variables are plant- 
coupled.    Then the complexity of the problem will be increased by 
consideration of load coupling,  and finally of combined load and transducer 
coupling.    Multivariable combined-control systems with artificial load 
coupling introduced to improve the dynamic response of the system are 
considered separately. 

In this chapter we consider systems with plant-coupled controlled 
variables. 

§3.2.    THE EFFECT OF SUBSYSTEM GAIN ON 
STABILITY OF MULTIVARIABLE CONTROL SYSTEMS 

Let us consider the effect of subsystem gain factors on the stability 
of a MCS consisting of single-loop subsystems. 

In Chapter Two we derived an equation for the ;'-th controlled variable 
under these conditions (equation (2.29)).    It is written as 

n 

VJ° = i 2 (-1>'+y A'Jo O lK«°<V> «f 0») + fc/ (P) It (/>)]• (2.2 9) 

The characteristic equation of a multivariable control system is 

A = 

*n(P) al2(p) ...   au(p) 
&n(P) a22(p) ...   a2n(p) 

*n(P) an(P) •••   <*,„(/>) 

«»i(/>) an2(p) ...  a„„(p) 

= 0, (3.1) 

where 

a„ (P) = D, (p) R, (p) Qt (p) eV + KM Av„ 1 
^(p) = KtRl(p)Ql(P)allt{p). J 

(3.2) 

We introduce a new symbol:   ^u(p) = Di(p)Rl(p)Ql(p)ez'p, the self-operator 
of a control loop made of basic elements.    In the lagless case, this operator 
will be denoted ß(p).    We also write 

*i (P) Qi (P) = Y, (/>).   K,K,a ö,n, = Kim. 

In this nomenclature,  equation (3.1) takes the form 

ßtnOO + Ki,,,,   f<iyi(p)«i2(p)  ■■■ K1y1(p)aln(p) 

K2y2 (P) a,, (p)    ßT22 (/>) + K2 m ... K2v2 (p) a^ (p) 

K»Y„(/>K,(/>)  /C,v,W«„(f) ... ßt„„0>) + /C„'tot 

= 0. (3.3) 
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(a)   SYSTEM WITHOUT LAG 

Expanding the determinant,  we write equation (3.3) in the form 

F'm U>) + S Kfn (P) + iIL^KlKjFMj(p)+ ...+KlK2...K„ + 

+fl«uw]f,w+M«ttW]',,.1(p)+...+i,[«i,wha (3.4) 

where F'm(p), F'Ni, F'm] are polynomials in the variable p, with coefficients 
independent of the subsystem gains, Fn(p), Fn^(p), . . .  are polynomials 
with coefficients independent of Ki, and a;/,(p) and l[an,(p)] are functions of 
the coupling coefficients. 

We now show that under certain conditions increasing the gain of some 
or all subsystems renders the multivariable control system unstable,  and 
that in multivariable systems with single-loop subsystems there is a 
contradiction between the feasibility of infinite gain and the stability of 
the system.   We assume the following relationships between the loop 
gains of the system: 

Kt = K, 

Substituting (3.5) in (3.4),  we find 

(3.5) 

F'm(p) + KFm(p) + K2FN2(p)-\- ... +/TIK + 

+M««(/')]f,W+f!Ki(;)lf,-i(;)+-+f,[«»(/')]=o. (3.6) 

We divide (3.6) by Kn and write 1/K=m.    Equation (3.6) takes the form 

m"Fm(p) + m^Fm(p)-\-m"^Fm(p)+ ... +mFN, „_, (/>) + ]! H, = 0,       (3.7) 

where 
Fm (P) = ^o (P) + /, K (/»)] F. (P) + ■ ■ ■ +1 [«,* (P)\ 

Increasing the gain is equivalent to decreasing m.    Our problem thus 
reduces to investigation of system stability as m->-0. 

Suppose that in the general case the characteristic equation can be 
written in the form 

m"FN0(p) + m'>-iFm(p)+m-*FN2(p)+ ...    +mFN,n_1(p) + FNn(P) = 0.   (3.8) 

Here the subscripts of  F denote the degree of the polynomials.    We now 
proceed to determine the conditions under which the roots of equation (3.8) 
are situated for m ->0 in the left-half plane (i. e.,  to the left of the imaginary 
axis). 

It is clear from our notation that the total number of roots in 
equation (3.8) is N0.    Let m->-0 in equation (3.8).    Then Nn out of the total Af0 

roots will approach the roots of the equation 

FNn(P) = 0, (3.9) 
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which we call the  degenerate   equation, by analogy with the theory 
of single-variable control systems /39/.    The other N0 — N„ roots will tend 
to infinity as m-»-0. 

Suppose that the degenerate equation FNn{p)=0 satisfies the stability 
criteria.    Then the stability of the entire equation (3.8) will depend on 
the disposition of the N0 — N„ roots which recede to infinity as m->■(). 

Let us consider the following cases. 
Case   1. 

Ar, = Ar0-l, N2 = N0-2 Nn = N0-n. (3.10) 

We divide equation (3.8) by mn and write it in expanded form: 

ampN<+anp«>-i+als2p
N>-i+ ■ ■. +± [aw"-1 + anpN>-*+ ...} + 

+ ^T\^PN'-2+anPN'-i+<h2PN'-i+ ..•]+... 

••• +-^rla^PNt-',+a,iPH'-l-1+ ■•■ +an,Jv„-„] = 0. (3.11) 

The degenerate equation in this case is 

anoPN°-"+a»iPN'--l + an2p
N>-'->+ ... + a„, N,.„ = 0. (3.12) 

It is implied that the coefficients of the degenerate equation satisfy 
the stability criteria,  since otherwise further analysis is meaningless. 
Thus for m-*0, N0 — n roots of equation (3.11) approach the N0— n roots of 
equation (3.12), which by definition lie in the left-half plane. 

We now derive an equation which gives the location of the n roots 
receding to infinity as m->-0.    Let 

(3.13) 

Substituting (3.13) in (3.11) we find 

s:+a»'jvr+ ••• +a"-ZN, 
iN'-1 ,„  iN'-> 

"ZN^T 

.1 l_/y      H 

•■■+«-^-+0.1^1-+ ••• =0. (3.14) 

Multiplying (3.14) by mN> and taking m->0, we find in the limit 

«oo?"«4- awq"<-* + a20^.-' + ... + a„&»>-> =0 (3.15) 

or, eliminating qN«-n roots, 

aool"+ a10q
n-1+a20q—*+ ... +a„0 = 0. (3.16) 

We shall refer to equation (3.16) as the auxiliary equation of the first 
kind.    It comprises the leading coefficients of the polynomials in (3.11) 
and determines the location of the n roots which receded to infinity as 
m->0.    The roots of this equation move to infinity in the left-half plane 
if the coefficients of (3.16) comply with the stability criteria. 
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To sum up,  if condition (3.10) is satisfied,  the mültivariable control 
system remains stable regardless of an indefinite increase in the sub- 
system gains,  provided that the degenerate equation and the auxiliary 
equation of the first kind each comply with the stability criteria. 

Case   2. 

Nl = N0 — 2,     Ni = N0 — 4,...,N„ = N0 — 2n. (3.17) 

Equation (3.8) is now written in the form 

i00P
N' + a^ + ag2p^ + 

■ ■■ +±lawPN°-* + "nPN'-3 + al3PN'-4+ •••] + 

+ ^\anPN>-A + anPN°-s+ •••! + 

+ y!«rtP*'-," + allJi*-,"-1+ ••• +a„. *-„,] = <>. (3.18) 

The degenerate equation is 

an0p«>-*" + aniP
N>-*-i+ ... +a„,AV-2« = 0. (3.19) 

The degenerate equation is again assumed to satisfy the stability 
conditions.    To establish the stability of the entire system, we have to 
elucidate the location of the 2n roots which recede to infinity as m-*■(). 

Substituting in (3.18) 

P = \, (3.20) 

Hi 
multiplying the equation by m 2 ,  and taking the limit as m->0, we obtain 
after division by qN>-2n 

amq*» + awq*-* + amq*<<-'t + •■• +a„o = 0. (3.21) 

Putting x=qi, we rewrite (3.21) in the form 

a00x" + a10jc»-' + a20jC-2-(- ... +a„0 = 0. (3.22) 

In our investigation of stability of equation (3.21), we are concerned 
only with the case when the roots of equation (3.22) are real and negative, 
since all the other alternatives correspond to unstable systems.    Now,  if 
the roots of (3.22) are real and negative,  the roots of (3.21) are imaginary. 
This is a limiting case in the Lyapunov theory, and whether (3.21) is stable 
or unstable depends on the actual location of the roots of (3.21) when m is 
small but not zero.    Thus,  in order to determine the location of the In roots 
which recede to infinity as m->0, only the terms linear in m should be 
retained in the auxiliary equation,  dropping all the higher-order terms. 

We now proceed to derive the auxiliary equation for m.    Substituting 
(3.20) in (3.18), we find 

qN0 qN,-l g/V„-2 ?/V0-2 
a00-lvr + a01     N>-i -Mo2     yv0-2 +   •••   +a10—SOT? 

m m 2+1 

+ all     Wo_3        + «12      JV„_4       +   •••   +fl20     ^„-4       +«21      Af-5 _,_, + 
~~2~ —2~ —T~ ~2— 
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+a. 22      yv,-6 + *, qNa-la 

"0     W,-2n   , ■*«•      /Vo-2*-l , = 0. 

w, 
Multiplying by  m2 , we obtain 

«oo?"' + !$* aaiQN-'1 + ma02q">-3- -«ior 
!+ 

+ m^„^ - ma12q" + awq"'-"+m3a2iq">-s + 

+ ma22q
N^ + ... + a^'-1« + a„lfn

3q^-3"-' + 
-f- ma8!?"'-!"-s + ... =0. (3.23) 

Here  m2 is of the first order of smallness.    Dropping the terms of higher 
order in m, we find 

amqN° + m3amq">-i + awq»>-3 + m3anq»°-3+a2<)q»°-'> + 

+m3a21q
N'~6+ ... + antlq"°-3'l+anlm

3qN>-3'<-i = 0 

or dividing by qN,-in-\i we finally obtain 

<W+1 +m3a01q
3"+a10q3'-i +m3anq3'-3+a20q

3'-' + 

+ rn3a2lq
3"-i + ... +m3anl=0. (3.24) 

This is an auxiliary equation of second   kind which,  in distinction 
from the auxiliary equation of the first kind discussed in the preceding, 
is composed of the first two leading terms of the polynomials in equation (3.8), 

every other coefficient being multiplied by m3. 
The roots which recede to infinity as m->0 are in the left-half plane if 

the auxiliary equation of second kind complies with the stability criteria. 
Let us check that the stability criteria are independent of m.    Indeed, 
the Hurwitz determinant for this case is 

1 

m2a0, m3an 

l 

m 2 a2i   . • m3anl 0 .. .    0 
ffoo «10 «20 "no 0 .. .    0 

0 m2a0i m3an   . .     0 0 .. .    0 

0 0 0 . 
2 

. m3a 

>0. (3.25) 

We see from (3.25) that m3 is a common factor for all the elements in every 

other row and it can be taken outside the determinant.    Clearly, m3 alters 
the scale of (3.25) but not its sign.    In writing the auxiliary equation we 

may therefore omit the factor m3 in all the coefficients of this equation. 
We have thus proved the following proposition. 
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If condition (3.17) is satisfied (mathematically this means that intro- 
duction of the next higher order of m adds 2 to the degree of the equation), 
the system is stable provided that the degenerate equation obtained from 
the general equation by putting m= 0 and the auxiliary equation of second 
kind comply with the stability criteria. 

Case   3 .    Here introduction of the next higher order of m raises 
the degree of the equation by 3,  i.e., 

Af, = N0-3,       N2 = tf0-6, .'.., W„ = JV0-3/t. (3.26) 

As in Case 2, we make the substitution 

m 

and write the auxiliary equation in the form 

«oo?3"+%><rw-3 + «20?3"--6+ ••• +«,o = 0. (3.27) 

Putting j/=<73, we rewrite (3.27) in the form 

aO0y + awy-l+a2Oy^+ ... +a„0 = 0. (3.28) 

Equation (3.28) always has right-half-plane roots,  and the system is 
unstable.    Indeed, the only case which requires verification is that of 
(3.28) with real and negative roots,  since otherwise the system is definitely 
unstable. 

Suppose that the coefficients of (3.28) satisfy the conditions of aperiodic 
stability /39/. Then all its roots are real and negative. To find the roots 
of (3.27), we make use of the relation 

q = t~y. (3.29) 

By recalling the properties of binomial equations we conclude that at 
least one of the three roots of (3.29) is in the right-half plane.    Indeed, 
the roots of an n-th order binomial equation are given by 

q = V\y\ l^055—+-/sin—)• 

where k=l, 2,. .. 
In our case n = 3 and the three roots are 

?i,2,3 = ^T(cos^- + ysin^-)       (A=l, 2, 3) 

1 

*-ttin(-i-/^). 
?3=fl7l-i. 
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One of these roots,  f]J],  is positive. 
Since equation (3.28) has n roots,  at least n of the 3 n roots of the 

auxiliary equation (3.27) are in the right-half plane and the system is 
unstable.    To sum up,  if we can find two adjoining polynomials with degrees 
differing by more than two (three or more) and the higher-order polynomial 
is multiplied by m to the higher power, the system is unstable. 

Case   4 .    In this case the difference in the degrees of the polynomials 
is variable. 

We have already established that if the difference in the degrees of any 
two adjoining polynomials is three or more,  the system is unstable.    We 
should therefore concentrate only on the case when the difference in the 
degrees of adjoining polynomials is either one or two.    The corresponding 
equation can be written in the following form: 

m"FN, (p) -\-m"-iFN^ (p) + m"'2FN^3 + m-VVs (/>) -f 

+m"-*FN,.,(p) + ... + FN,.n(p) = 0. (3.30) 

We shall show that the polynomials must be arranged in the order of 
increasing difference in degrees,  since otherwise the system is unstable. 
It of course suffices to show that violation of this rule in any particular 
case results in system instability.    Consider the simple equation 

mV,,, (p) + mFN,-t(p) + FN<t_3(p) = o. (3.31) 

Here the polynomial of degree N0 is followed by a polynomial of degree 
N0 -2 and then by a polynomial of degree N0-3, i. e.,  in this three-membered 
equation the degree of the polynomials decreases first by 2 and then by 1. 
We write (3.31) in expanded form: 

1 
"wPN' + amPN'-' +ampN>-* + ... +-^[a,0/>"'-2+an/A-il-h..]-r 

Substituting in (3.32) 

+ -rtlawpN°-3 + a2lP«>-'>+ ...] = 0. (3.32) 

P = JT , (3.33) 

we find 
qN>    , qN'-i qN>-2 a

N>-* a
N°-3 

">2 m   2 m   2 m2 m 2 

„/Vo-3 a
N<>-4 aN«s 

■■• +a2oJW + fl2i-Svr+g22-Vr+ •■• =0. (3.34) 
m   2 m 2 m   2 

JV. + l 

We multiply (3.34) by m  '    in order to eliminate the m in the denominator, 
and write 

1 I I 
m''aoo<}N' + ma01q

N>-i + m2a0tf
N°-i+ ... +m

2alo9*-2-|- 
I j. 

+ ffla11f'-
s+mJaI2f.-"+ ... -\-axq">-3+mta21q^-< + 

+ma^qN>^ -)-... =0. (3.35) 
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Equation (3.35) has coefficients of various orders of smallness.    Suppose 
l_ 

that we decide to retain terms with m2"; dropping terms of higher order of 
smallness, we find 

m'lamqN'-\-m.2amqN'-,2 + awqN'-i + m2anqN»-4 = 0. (3.36) 

The coefficients of equation (3.36) do not comply with the stability 
criteria for two reasons.    First, the coefficient of q"'-1 is zero and,  second, 
equation (3.36) may be written in the form 

j^ 
m2 K>?'v° + ao2<7/v'-2 +a21q»°-*]+awq'*>-3 = 0 (3.37) 

W0 —W0 + 3 = 3, (3.38) 

and according to the preceding rule,  it has at least one right-half-plane 
root for small m. 

If terms to the order of m are retained in (3.35),  condition (3.38) remains 
in force and the system is unstable as before.    We have thus proved a 
highly important condition: the   polynomials   should   be   arranged 
in   such   a   sequence   that   the   difference   in   their   degrees 
increases. 

Let us consider the derivation of the auxiliary equation when the above 
condition is satisfied.    It is clear that a difference of one in the degrees 
of adjoining polynomials is permissible only between the first and the 
second polynomials,  and further down the series the difference must be 
two.    This follows directly from the rule that we have just proved, which 
can be called the property.of   declining   degrees. 

We start with the equation 

mnFN,(p)+m-'FNt.1(p) + m'-iFNt.3(p) + ... 

•■■+mF
N-JL(P) + FN   %>)= 0. (3.39) 

Writing (3.39) in expanded form and substituting the variables according 
to (3.33), we find after simple manipulations 

a0O—NT + a01     W.-l   +ffl02     JV.-2   +   ••• 
m * m     2 FM     2 

„N,-\ JV.-2 JV.-3 N,-4 

••• +gio-^TT+gnX-Är+ ••• +a2oJW+a2ij!hvr 
m   2 m 2 m   2 m2 

0^.-5 «,-5 JV„-6 (V0_7 

+ a22-ivpr+ • • • +a3° -Tg±T + a31 ^-JvT+a32-^vPT + • 
m   2 m   2 m2 m   2 

JVo-f-l /V.--y-2 

... 4-ajv,-.«-i,o—^j-jTj— +aN,-n_iAS. (_ 
2 

1 2 

+ a^v,-n-i,2iSvFr—1----=0. (3.40) 
m    2 
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Multiplying (3.40) by m  2   and retaining terms of the order m2, we 
obtain the auxiliary equation 

i I i 
m2amqN« + a10q

N>-> +m2anq"°-2+a20q">-3+m2a2lq">-'<+ 

+ a30?
JV'-5+ ••• +aN,-n-h0q

N>->-1 + m2aN,-„-l,lq
N°-"-2=:0.        (3.41) 

j^ 
The small quantity m2 clearly does not influence the stability conditions, 

since it multiplies all the odd terms of the equations.    For this reason, 
j_ 

/re2 can be omitted from the coefficients in writing the auxiliary equation. 
It is clear from (3.41) that the auxiliary equation comprises the coefficient 
of the first term of the leading polynomial and the coefficients of the first 
two leading terms of all the subsequent polynomials. 

Dividing (3.41) by qN»-"-2 and dropping the factor m2, we find 

a0oqn+2+a10q
n-' + anqn+a20q''-1+a2lq'-2+ ... 

-+VS-.*+V-H=a (3-42) 

This is an auxiliary equation of third   kind.    As an example, we 
write the auxiliary equation of the third kind for n= 2.    Thus 

a00q
4 + a10q^+anq2 + a2lq + a2l=^0. (3.43) 

We have thus established under what conditions the subsystem gains 
can be increased and what conditions are to be satisfied by the coefficients 
of the general characteristic equation in order for the system not to lose 
its stability. 

We now return to equation (3.6), to determine the structure of the 
subsystems and to summarize our analysis. 

In (3.6) 

FNt = ^.Dl(p)Ql(p)Rl(P)- (3-44) 

This is a product of the products of the self-operators of the elements in 
a single-loop subsystem: 

Fm = '2Kjt0tJlDJ(p)Qi(p)RJ(p) + M(p), (3.45) 

where M(p) is a polynomial of degree which is definitely less than the 
degree of the first term in (3.45) by an amount equal to the degree of Di(p). 
Similarly, 

FN2(p) = IlKlKj  6 D1l(p)Qn(p)Rn(p)+Mi(p) , (3.46) 

i.e., each successive polynomial contains one product D(p)Q(p)R(p) less 
than its predecessor.   Hence it follows that in our case D(p)Q(p)R(p) is at 
most of second degree. 

Our analysis of the simple basic structure leads to the following 
conclusions. 
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1. If the self-operator of each loop with basic elements is of degree 1, 
all the gains can be increased simultaneously without loss of stability. 
The degenerate equation and the auxiliary equation of the first kind should 
each satisfy the stability conditions. 

2. If the self-operator of each loop with basic elements is of degree 2, 
all the gains can be increased simultaneously without loss of stability. 
The degenerate equation and the auxiliary equation of the second kind 
should each satisfy the stability conditions. 

3. If the self-operator of each loop with basic elements is of degree 3 
or higher, an increase of one,  several, or all loop gains invariably leads 
to loss of stability.   There is consequently a contradiction between the 
feasibility of gain increase and the stability of the system,  similar to that 
observed in single-loop systems with a self-operator of degree higher 
than two. 

4. If the self-operators of the different loops in a multivariable system 
are of different degrees, the gain of none of the loops with self-operators 
of degree higher than 2 can be increased without losing the stability of 
the system as a whole. 

5. The structure of the multivariable control system should satisfy 
the rule of declining degrees.    A system with first v terms showing a 
difference of 1 in their degrees and the next n — v terms a difference of 2 
obviously meets this criterion. 

(b)  SYSTEM WITH LAG 

We now return to the starting set of equations.    We shall try to establish 
the configuration of a multivariable control system whose subsystems are 
made up of basic elements plus lags.    The set of equations in this case is 
written in the following form: 

(ß«T (P) + Kt m) V^Kit y, (p) a„ (p) Yk (p) = 

= KllmYtal(p)       (/=1, 2, ...,«). (3.47) 

The characteristic equation can be written in the form 

ßii(P)«T,/,-rtfitot  /CiYi(p)o„0>) ...   K,y,(p)aln<j>) 

KM(p)a„ (p) h>(p)er"' + K2tm    ...   Kiyi{p)a2n(p) 

KnVn(.P)<*m(p) K„y„(p)anl(p) ...   ß„'„(/0eV'+/C„ 

= 0. (3.48) 

We have already seen (Chapter Two) that the steady-state error in the 
i-th controlled variable decreases with the increase in the i-th loop gain 
in lagged systems, too.    It is easily shown that the results of the previous 
subsection can be completely extended to multivariable control systems 
where some or all subsystems contain lags.   We omit the proof*,  since 
it in fact amounts to repetition of the previous manipulations.    We shall 
only concentratJ on the new properties which are attributed to the intro- 
duction of lags. 

*     The validity of this proposition follows from the synthesis of lagged systems remaining stable at infinite 
gain, which is described in the sequel. 
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We now prove the following proposition:   if   there   exists   at   least 
one   pair   of   coupling   coefficients  aift(p)and a,ki(p)  such   that 
a«(p)aft.-(p) is   of  higher   order   in  p than  Di(p)Dh{p)  is, and   time 
lag   is   provided   in   the   i-th   or   the    £-th   loop, the   system 
is   structurally   unstable. 

Indeed,  for the system to become structurally unstable in this case, 
it suffices to omit the leading term from the characteristic equation. 

As we easily see from (3.48) and the procedure for the construction 
of the characteristic equation for the entire multivariable control system, 

n 

the maximum value of t is equal to the sum of all the lags t= 2 T; and 
n '-> 

a term e '='    will precede the product 11 ß^ (/>).    Since the quasipolynomials 

entering the characteristic equation include the quasipolynomial 

, n w/»)««^)«««/'), ,n ß„t(/»). 

the characteristic equation will lose its leading term, if aift(p)afti(p)is of higher 
degree than ß,j(p)ßM(p) is, and the system will become structurally unstable. 

§3.3.    STRUCTURE OF LAG LESS MULTIVARIABLE 
CONTROL SYSTEMS WITH INFINITE-GAIN STABILITY 

Under real conditions, the self-operators of the subsystems may be of 
higher than second degree.    It follows from §3.1 that in this case an 
increase in one or several gain parameters of loops with self-operators 
of degree higher than 2 will inevitably lead to loss of stability.    We thus 
have the following problem: synthesize a multivariable control system 
which would be inherently free from the contradiction between stability 
and precision. 

Let the self-operator of the subsystem for one of the controlled variables, 
say Yt, be of degree Vi>2.    An increase in gain of this loop inevitably leads 
to instability of the entire system.    This conclusion follows from the 
preceding results, but it can also be verified directly.    Additional proof 
of this fact will be quite useful in the sequel, and we therefore reproduce 
it here in detail. 

Developing the determinant (3.3) with respect to the first column, we find 

On (p) + K, ,„,] A„ + KiR* (p) Qn (P) a21 (P) A2I + ... 
••• +*./?. 0»)Q.(/») <*.i (J»)A.i=0. (3.49) 

where A« are the cofactors of the corresponding elements in the first 
column.    The first term in (3.49) contains p to the highest order,  since 
it carries the fewest mutual-coupling coefficients, which are either 
constants or operators of degree less than the degree of the self-operators 
of the individual loops.    Equation (3.49) can thus be written in the form 

FNAP)+KUofNAP)=0, (3.50) 
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where the subscripts F designate the degree of the polynomials FKz(p) and 
Fm(p)-   Obviously, Nz = JVj+ V{.    Hence it follows that if Ki>2, the increase 
in Ki ,0I will immediately result in system instability.    It is also obvious 
that the condition Af2— /Vt<2  is satisfied if the (JVi — 2)-th derivative is 
introduced into the first loop.    Indeed, if the (Vi — 2)-th derivative is 
introduced into the first loop,  equation (3.50) takes the form 

FmW + Ki« (pv--2+l)Fm(p) = 0. (3.51) 

Here JV2 — Nf<2.    Generalizing this result to the case when the self- 
operators of each control loop are of degree Vi, we come to the conclusion 
that stability can be ensured for any Kim if the (Vt — 2)-th derivative is 
introduced into each loop with I/j>2.    This ensures the condition N2 — Wf<2 
in the ('-th loop. 

Now,  is it necessary to introduce, besides the (Vi—2)-the derivative, 
all the lower-order derivatives as well, down to the first derivative? 

Before answering this question,  let us derive an expression for the 
degenerate equation, assuming that the (Vi-2)-th derivative has been 
introduced into each loop with V,->2.    It is easily seen that the degenerate 
equation has the form 

{pV>-*+ \)(PV"2+ 1) ••• (pv'-2+ \)FN,(P) = 0. (3.52) 

Regardless of the form of the polynomial FNn(p),  the system is obviously 
unstable if any Vj,>3.    Hence it follows that stability of the degenerate 
equation can be ensured if for Vk>3 all the lower-order derivatives,  down 
to the first derivative, are introduced together with the [Vi — 2)-th derivative. 

We thus come to the following conclusion.    A system with n plant-coupled 
controlled variables can be stabilized with respect to each controlled 
variable for any gain value.    To this end all the derivatives from {V{ — 2)-th 
down to the first inclusive should be introduced into the corresponding loop 
(Vi is the order of the self-operator   of the   j-th loop). 

§3.4.    ALTERNATIVE SOLUTION 

Yi 
Mideg 

Ki., 
~DJ~ipi 

> > 

< -■ 

^ > 
1 

In the preceding section we dealt with the synthesis of structures that 
retained their stability at infinite gain.    This necessitated the introduction 
of ideal derivatives of various orders into the system.    We shall see 

from what follows (and incidentally this 
is also known from the literature /39/) 
that in principle real derivatives of any 
order can be made arbitrarily close to 
the ideal.    This approach, however,  can 
be recommended in practice only if no 
other more convenient alternative is open 
to us.    In this section we describe a 
synthesis procedure which achieves the 
same effect (i.e., indefinite increase of 

FIGURE 3.1.   The /-th subsystem with a gain without loss of stability) but does not 
stabilizer. resort to ideal derivatives. 

n 

Fmilp) 
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It is clear from the outset that the single-loop configuration is no longer 
adequate for the subsystems.    Figure 3.1 is a block diagram of the i-th 
subsystem in a multivariable control system.    We introduce the following 
nomenclature for the i-th subsystem: 

Mi(p)Di(p)= the self-operator of the subsystem,  ignoring the stabilizer; 

-^Mjjj-=the operator of the additional element introduced as internal 

feedback in the subsystem (we call this additional path the  stabilizer); 
Fn((p)and Fmi(p) = polynomials in the operator p; 
Kt„= the gain of the stabilized section,  i. e., the part of the forward 

path embraced by the stabilizer; 
KiäQ= the gain of the unstabilized section outside the stabilizer loop; 
A^the plant gain for the ;-th controlled variable; 
Mt »(P) = the self-operator of the stabilized part of the controller; 
Miteg[p)= the self-operator of the unstabilized section. 
Clearly Ki™=Ki „ KtKi^g ■ 
Now,  suppose that the plant has n controlled variables and there are 

correspondingly n control networks.    As before, we assume that the 
controlled variables are interconnected through the plant, the coupling 
coefficients being aih(p).    The constraints on aik(p) are the same as in 
the preceding.    Automatic control can be described by the following set 
of differential equations: 

IA(/»VW/»)M « (P)Fmi(P)+Kl „ Fm(P)\+KlmFmi{P)\Yl(P)= 
= Ki^Fmi(p)YM(p)~K'i\Ml „ {p)Fmi{p)+Ki s, Fnl(p)]X 

XMilleg(p) 
ft=i 

(/=1, 2, ..., ri). (3.53) 

For the sake of convenience we put 

n, (/>) = D, (p) At, deg (p) M, „ (p) Fmi (p), 
Bt (P) = D, (/>) M, deg (p) Fnl (p) + Kt deg Fml (p), 

Dl(p) = K'M „(p)Fml(p)- 

(3.54) 

The degree of the operator Ili(p) is the degree of the i-th self-operator 
plus the degree of the denominator of the stabilizer operator.    The degree 
of the operator B{(p) is the degree of the self-operator of the unstabilized 
controller plus the degree of the plant operator and the degree of the 
numerator of the stabilizer operator.    The degree of Di(p) is the degree of 
the self-operator of the stabilized controller plus the degree of the 
denominator of the stabilizer operator. 

In our new nomenclature,  the equations can be written in the form 

[nl(p)+KlnBi(p)]r,(P) + 

+ [Di (p) + Kt „ KfiFm (P)] Mi deg (p) Sa„0>)r»(p)-f» 

=*KimFml(p)Ytri:!(p)      (j = l, 2, .... «). (3.55) 

71 



The characteristic determinant of (3.55) is 

(3.56) 
Au    A{1 ... Atl 

A2i     A22 . •.  A2r 

where 

Ail = nl(p) + Kla  B,(p) 
and 

A,» = [D, (p)+Kt » K'i Fni (pj\ Mt deg (p) at, (p). 

Expanding (3.56), we obtain the characteristic equation 

Fm(p) +-K« Fm(P)+K\ Fm(p)+ ■■■ +K°, FNn(p) = 0, (3.57) 

where FN0(p) includes the product of all II,(p) and all other products in which 
Kst does not enter as a factor.    The polynomial FN0(p) clearly contains p to 
the highest order,  and it determines the degree of the characteristic 
equation. 

n 

The polynomial FNi(p) is a sum of the products of ß,(p)and  [[ H« (/>); 

FNl(p) also includes all other terms which depend on the coupling coefficients 
ccik(p) and appear as a factor before Ka to the power of 1. 

All the successive terms in (3.57) are formed according to the same rule; 
the higher the subscript N,  the fewer Ili(p) appear in the product.    The last 

n 

term in (3.57), having K"as its coefficient,  consists of the product    H Bi(P) 

plus terms dependent on ath{p) which appear as a factor before /C* . 
Suppose that each control loop with its stabilizer form an isolated 

network which retains its stability as the gain is increased indefinitely. 
Then, as it follows from the construction of the polynomials in (3.57),  the 
difference in the degrees of two adjoining polynomials cannot be greater than 2. 

We thus arrive at the following procedure for the synthesis of multi- 
variable control systems with infinite-gain stability:   the gain of each sub- 
system in a system with n mutually coupled (through the plant) controlled 
variables can be increased indefinitely without causing instability of any 
of the subsystems or the system as a whole if and only if 

(a) each subsystem, treated in isolation from other controlled variables, 
remains stable at arbitrarily high gains, and 

(b) the degenerate equation and the auxiliary equations of the first, 
second,  and third kind of the entire multivariable system each comply with 
the stability criteria. 

§3.5.    LAGGED MULTIVARIABLE SYSTEMS WITH 
INFINITE-GAIN STABILITY 

Let us now try to extend the results of previous sections concerning 
the synthesis of multivariable control systems with infinite-gain stability 
to multivariable systems with time lags. 

72 



FIGURE 3.2.    The i-th subsystem with a stabi- 
lizer and a lag element. 

Figure 3.2 is a block diagram of 
a lagged multivariable system with 
time lag.    Part of the system is 
stabilized by a feedback element 

with a transfer function ■,"',?.    It 
Fml (p) 

is assumed that the stabilized section 
is lagless.    We will now establish 
the properties of the stabilizer and 
the stabilized section which permit 
indefinitely increasing the local gain 
and hence of the total system gain. 

A structure shown in Figure 3.2 
is described by the following set of differential equations: 

[Pi (P) ex'p + K, « S, (p) «V + K, mFml (/»)] Y, (p) + 

+ Kl\Rl(p) + Kl „ Nl(p)Fnl(p)\^laik(p)Yk(p)^ 

= K, [/?, (P) + Ki„Ni(p)Fnl (p)\ [Yt ,ef (p) + f, (/,)] 
(/=!, 2, .... «), 

where 

Pi(P)=Dl{p)Ni(p)Fml(p)Ql(p), 
Si{P)^Dl(p)Nl(p)Fnt(p), 
Rl(p) = Nl(p)Fml(p)Qi(p), 

(3.58) 

(3.59) 

Ni(p)=the self-operator of the unstabilized section of the i'-th subsystem; 
Qi(p)=the self-operator of the stabilized section of the i-th subsystem; 
K{= the gain of the unstabilized section of the /-th subsystem; 
Ki „ = the gain of the elements in the stabilizer loop; 
Ki Mt = Ki ,, Ki deg . 
The characteristic equation is 

-"11       -"12     -"1/ 

A2i   . A22 —   A21 = 0. (3.60) 

An\    Ani  ...  Ani 

The expressions for Atl( i= 1, 2, . . .; /= 1, 2,. . .) have the form 

AU=P, (P) ex'p+K, „ 5, (p) exip + K, mFlm (/>), 
Aj = K, [Rt (P) + K, . Nt (p) Fnl (p)] oy (p). 

In the following we assume that the gains of the stabilized elements in the 
various subsystems are either equal to one another or are related by 
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The characteristic equation is thus written in the form 

UP,(p)e'-i    +KnmS,U,)Ci-lP,lp)e*     + 
R \ 

+ ZJoo (p) *'-*V + ... + Do„ (p) + 

+ K\, \I% S1(p)S„{p)Cn
n-

,Pi(p)e'^''' +Dw(p)e'^''' + ... 
n 

... +Z>,„ (/»))+ ...+K\ jn5,(p) «'-«'' + 

+ D„0(/>)e<='     + ...+£>„„(/>)+/?(/>) = 0, (3.61) 

where F(p) is a polynomial independent of K* and T.    The polynomials ö«(p) 
are obviously of lower order in p than the polynomials in the first term 
in braces.    Dividing (3.61) through by Kit we put 

1 m* 

Equation (3.61) is thus written in the form 

][j[/>,(/»)e'-,V' +F(p) $S,(p)C:-'P,(p)e''*t" + 

+ D00(p)e'=*'P + ... + /)„„(/>)  + 

it 

2 5,(jB)5*(p)Cr2Pi(p)e'=lV + 

V I " 

+Ao(/>)e(=2   + ...+£>,„(/>)f-i- ■•• +n*i(/»)«'-1    + 

+ £>„„ (/>) *'-»**' + ...+Dnn(P) = 0. 

The degenerate equation is obtained by taking m= 0 in (3.62): 
n n 

nSAp)^^1" +Dn0(p)e'^"' + ... +D„(/>)=0. 

(3.62) 

(3.63) 

Suppose that the degenerate equation (3.63) can be made to satisfy the 
stability conditions by appropriate choice of the stabilizer parameters 
Fn((p) and Fmi(p) (otherwise, further analysis is meaningless).    The stability 
of the entire system is dependent on the location of the roots which recede 
to infinity as m— 0. 

First we should establish the presence of the leading term in equation (3.62). 
According to the theorem of structural stability proved in the previous 
section, we know that equation (3.62) has a leading term if for each pair 
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of coupling coefficients the polynomial a,„ (p) a*,-(p) is of lower degree than 
the polynomial D,(p)Di(p) is.    In what follows we assume that this condition 
is satisfied. 

Let us find the number and the nature of the roots which go to infinity 

as OT-»-0.    Dividing equation (3.62) by m"e'=1    , we find 

-2 T," 
UPl(p) + F(p)e '-'     +-L 2 S,(p)C!r'/>((/>) + 

+ Dw{p)e-J''' + ... +D0n(p)e '=> 

-Si 

+ ••• 

'•Im» 
JI 5,. (/») + D„0 (/,) «V + ... + £>„„ (p) e i- = 0. 

Equation (3.64) can be expanded in the form 

2 v 
^ooP,v» + ^i/''v°-,+ --- +(500^» + ß01p^-'+ ...)«  '=>"   + 

+ ^ [AloP
N>+AnP

N'-l+... +(Äly»+flly--'+. ..K V+.. .]+ 

■ + ...  + ^[AK,/A + A!,/V' + ... 

... +(5„y"°+5„1A-1+ ...)«-v+ ...j=o. 

(3.64) 

(3.65) 

where iV0, Ni, . . .  are the degrees of the polynomials associated with the 
corresponding powers of m in (3.65).    Let 

N0 — W,= l,   Af0-/V2 = 2, ..., W0 — /V„ = /i. (3.66) 

In other words,  the degree of each successive sum of polynomials is one 
less than that of the preceding sum. 

We make the substitution 

P = JL- (3.67) 

• Inserting (3.66) in (3.65),  multiplying by mN and putting m= 0, we 
obtain after some manipulations 

Amq" + Al0q'->+ ... +Ana = 0. (3.68) 

There are n roots which go to infinity for m ->- 0, and their location on the 
root plane is determined by the coefficients in (3.68). 
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All the roots of equation (3.68) recede to infinity in the left-half plane 
if and only if the coefficients of this equation satisfy the Routh —Hurwitz 
criteria. 

We thus come to the conclusion that a system with constraint (3.66) 
is stable if the degenerate transcendental equation and equation (3.68), 
which by analogy with the preceding is called an auxiliary equation of the 
first kind, both satisfy the stability conditions.    Our problem is thus to 
choose the stabilizer transfer function and its location in the system ensuring 

Let us now consider the case 

W0-;V, = 2,    N0-N2 = 4, ...,    N0-Nn = 2n. (3.69) 

Substituting 

/> = •& (3.70) 

and acting as in the preceding, we obtain an auxiliary equation of second kind: 

Aoo4N° + Ail"'-1 + ■■■ +A10q»>-* + Allq»>-*+ ... 
... + A„0q">-*" + Anlq"*-*-i + ... (3.71) 

We have obtained a similar equation before,in our  analysis of lagless 
multivariable systems.    It comprises the first two leading coefficients 
of each polynomial in (3.65).   " 

The system is stable for m->0 if and only if 
(a) the degenerate transcendental equation satisfies the stability 

conditions, 
(b) the auxiliary equation of second kind also satisfies the stability 

conditions. 
Dividing (3.71) through by qi*>-*», we write the auxiliary equation of 

second kind in the form 

A00q*" + A01q*>-i + Aioq>'-*+ ... +An0q + Anl = 0. (3.72) 

Finally,  if 

^o-^,>3,   Ar0-/v2>6, ..., (3.73) 

the system is unstable for m->-0. The validity of this proposition follows 
from the property of roots of binomial algebraic equations and is proved 
in the same way as before. 

We thus come to the conclusion that multivariable control systems 
with time lag which remain stable under unlimited increase of the sub- 
system gains are realizable.    The necessary conditions for this synthesis 
are specified in the preceding. 

Let us elucidate the relationship between the above conditions and the 
structure of the control system.    In other words, we determine the 
parameters N0, Nu .... N„. 
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Examining the structure of the polynomials in (3.65) and making use of 
the nomenclature (3.59), we see that the differences   N0 — Ns, Ni — N2, ... 
..., N„-i — N„ are given by the relation 

N0 — Nl = m, + Q, — n„ (3.74) 

where m{ is the degree of the operator p in the denominator of the stabilizer 
transfer function; Qf is the degree of the operator p in the denominators 
of the transfer functions of the elements in the stabilizer section; «,- is the 
degree of the operator p in the numerator of the stabilizer transfer function. 

By assumption 

whence 

W,-#<_,< 2, 

/»/-», + Q(<2. 

The degree of the equation describing the stabilized section of systems 
with infinite-gain stability is thus given by the inequality 

Qi C-t -m, + 2. (3.75) 

An analogous relationship has been derived for single-variable systems 
and for systems without lag.    We thus see that a multivariable control 
system with time lag remains stable under indefinite increase of gain 
if and only if each subsystem whose gain is arbitrarily increased belongs 
to the class of structures with infinite-gain stability. 

§3.6.    MULTIVARIABLE CONTROL SYSTEMS WITH 
COUPLING THROUGH THE MEASURING DEVICE 

Oöifp) T7¥) 

K 

ft». 

> 

^A~/J 
Zh-{>> K 
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Let us consider a particular, but 
highly significant,  class of multivariable 
systems where the controlled variables 
are interconnected by the measuring 
device.    Transducer-coupled systems 
of this kind are generally called multi- 
dimensional   servosystems.    The 
case of systems consisting of single-loop 
servos was considered in Chapter Two. 
We now extend the results of the previous 
sections of Chapter Three to the case of 

a multidimensional servosystem block-diagramed in Figure 3. 3. 
Making use of the nomenclature in Figure 3.3, we write the set of 

equations describing the dynamics of a multidimensional servosystem 
in Laplace transforms: 

FIGURE 3.3.    Block diagram of the i-th 
loop of a control-coupled system. 

«M/o V, =KH\ \y,K, (P)-YI (/>)]+ 2 ru (P) (rtK,(P)-r»(P))\, 

Q« i(P)Y"i{p)=Ki . [y'(P)—j£$YUpJ\. 
(3.76) 
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or,  eliminating V',(p) and Y"t(p), we have 

(3.77} 

\Q»{P)Q « l(P)Fmi(p)Dl(p) + Kl „ QAP)Fml(p)Di(p) + 

+ K, ,KätKi0Fm(p)}rl(p) + Kl HKilKnFml{p)trlt(p)rll(p) = 

=Ki «'<<:if<mFml(p)^rlk(p)yM(p)+KlolQdl(P)Q M ,(/>)^(/>)+ 

+fi ,Dit(p)Fml(p)\fl(p)       (* = i, 2 re). 

The characteristic equation generated by the set (3.78) is 

ßriQO + K, slYfl(l>)+ KimPmi{p)rlt ...      KimFm{p)rin 

KuoiFm2(p)r2,        ^C1(p) + K1 aya(p)+   ■■■      K,mFm,{p)r,n 

4" f»tm',BU (/>) 

(3.78) 

KnimFmn(P)rnl ■%n(p)+Kn  ..Y«(/>)+ 
+A:n,0,/=,

m„(/>) 

= 0 (3.79) 

where 

M/>) = Qdi(/»)Qi n (p)Fm(P)D,(p) 
Y,i(P) = Q/ x(P)Dl(p)Fml(p). (3.80) 

The determinant (3.79) has the same structure as the determinant 
(3.48),  and our results for the synthesis of systems with infinite-gain 
stability can thus be extended in their entirety to the case of multidimen- 
sional servosystems.    To be specific,  if each component servo considered 
as a noninteracting system belongs to the class of systems with infinite- 
gain stability, the entire multidimensional servosystem will remain stable 
when the subsystem gains are increased indefinitely,  provided that the 
degenerate equations and the auxiliary equations of first,  second, and 
third kinds comply with the stability criteria. 

It is easily understood that the results pertaining to the synthesis of 
stable systems with arbitrarily large loop gains remain valid in the case 
of systems with simultaneous plant- and transducer-coupling.    The same 
laws also apply when load coupling is additionally introduced.    This case 
however,  is treated in full detail in a separate chapter. 

We have thus established the laws of synthesis of multivariable control 
systems which are stable even though the subsystem gains are increased 
indefinitely.    In the next chapter we will treat on the fundamental properties 
of these systems. 

§3.7.    DERIVATION OF THE FUNDAMENTAL 
PROPERTIES OF AUTOMATIC CONTROL SYSTEMS 
FROM THE D-DECOMPOSITION CURVE 

In subsequent chapters we will often have to assess the properties of 
multivariable control systems.    The corresponding estimates are 
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conveniently obtained with the aid of the D-decomposition curve.    According 
to the D-decomposition method,  the quality of the system is associated with 
the numerical values of all the relevant indices.    We can actually trace the 
variation of the system dynamics for various gain values; furthermore, 
all the estimates are obtained making use of a single D-decomposition curve. 

In the beginning let us consider the evaluation of the dynamic properties 
of single-variable systems.    At a later stage, the results will be extended 
to multivariable systems. 

The transfer functions of closed-loop control systems are divided into 
two groups.    The first group includes symmetric transfer functions of 
the type 

^)=TT%)' (3-81) 

where W(p) is the transfer function of the open-loop system. 
The second group includes asymmetric transfer functions of the form 

KM=TT4%T- (3-82> 

Here Wx(p) incorporates the external disturbances and is dependent on the 
point of their application in the system.    The initial control conditions 
can also be incorporated in transfer functions of this general form. 

Let the open-loop transfer function be given by a rational-fractional 
expression 

^)=w (3-83) 

The characteristic equation corresponding to the differential equation 
of the closed-loop system is then written in the form 

1 + 0, (P) 

Ri(p) + Qi(P) = 0. (3.84) 

Consider'the effect on system dynamics of some parameter T (the 
characteristic equation of the system is linear in this parameter): 

Q(p) + xR(p) = 0. (3.85) 

The equation of the D-decomposition curve for the parameter T has 
the form 

*—SS-- (3-86> 
The curve plotted using equation (3.86) is a locus of t-values for 

which the system remains stable. 
The gain-phase characteristic (i.e., Nyquist diagram) of a closed- 

loop system in the case (3.81) has the form 
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or, making use of (3.85) and (3 86), 

K„W - 
t + R(M 

(3.88) 

Equation (3.88) relates the frequency response of a closed-loop control 
system to the geometry of the D-decomposition curve for the parameter t. 

Let us consider the case when the system gain K is treated as the 
parameter T.    The gain-phase characteristic of a closed-loop system in 
the case (3.81) is written in the form 

K,W = - 
K + 

(3.89) 

where N(]l)  is the equation of the  D-decomposition curve for the complex K. 

The quality indices of the system which follow from the properties of 
the real frequency response are readily obtained from the ^-decomposition 
equation (3.89);* the gain margin, the phase margin and the height of the 
peak on the closed-loop gain plot are also easily determined using this curve. 

lmK 
f{ plane 

Re/r 

FIGURE 3.4.   Derivation of the gain charac- 
teristic from D-decomposition curve. 

lm/fW(ju) 

BeKWjw) 

FIGURE 3.5.   Estimating phase and gain margin. 

Figure 3.4 is a specimen D-decomposition curve for the total gain K. 
The denominator of (3.89) for some frequency to, and a given Ko (the gain 
for (o = 0) is determined by the vector be; the amplitude value of (3.89) 

for Ko and to, is thus determined by the ratio ~.    Having found the gain 

amplitudes for the entire frequency range, we establish the gain character- 
istic of the system. 

*     For more details on this subject see Meerov, M. V. Ispol'zovanie krivoi D-razbieniya dlya otsenki 
kachestva sistem avtomaticheskogo regulirovaniya (O-decomposition Curve for Quality Evaluation 
of Automatic Control Systems). — Avtomatika i Telemekhanika, 12, No. 6.   1951. 
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Having selected Ko, we can easily find the peak of the closed-loop gain 
plot without first constructing the entire response characteristic.    Taking Kt> 
as the center of a circle, we draw a tangent to the D-decomposition curve. 
The peak of the closed-loop gain plot is then given by A'o to the radius of 

the circle,  i.e., by the ratio-rj. 

The phase and gain margin can be easily determined from the Nyquist 
diagram of an open-loop system.    The phase margin is found in the 
following way.    A circle of unit radius is drawn around the origin in 
the gain phase plane (Figure 3.5).    The intersection of this circle 
with the Nyquist plot gives the  crossover   f r e qu en cy (or the 
cutoff   frequency) and the angle between the negative real axis and 
the segment from the origin to the intersection point is the phase 
margin   (angle qja in Figure 3.5).    In the nomenclature of equation (3.89) 
the open-loop gain-phase characteristic is expressed by the relation 

W(Ja)- 
KN(ja) 
M(ja) (3.90) 

whereas the equation of the D- de composition curve for K is given by 

K-- M(ja) 
N{]<s>) 

(3.91) 

According to equations (3.90) and (3.91),  the phase margin of an open- 
loop system is determined from the D-decomposition curve in the following 
way.    A circle of radius Ka is drawn around the origin in the K plane; the 
angle <{>„ gives the phase margin (Figure 3.6).    The gain margin is obtained 
without difficulty,  since the decomposition curve defines on the K plane 
the entire set of gain values for which the system is stable. 

Re/r a 

FIGURE 3.6.   Estimating phase and gain margin 
from the /^-decomposition curve. 

FIGURE 3.7.   Construction of the real frequency 
response from D-decomposition curve. 

We now proceed to determine via the D-decomposition curve some 
quality indices which follow from the properties of the real frequency 
response of a closed-loop system.    First let us show how the closed-loop 
real frequency response can be obtained from a given D-decomposition 
curve in the K plane (we are concerned with the symmetrical case,  see 
equation (3.81)). 



We have already shown how to construct the gain plot of a closed-loop 
system from the ^-decomposition curve in the K plane.    The real frequency 
response is obtained without difficulty if,  in addition to the'gain plot, we can 
also find the closed-loop phase-angle diagram from the Decomposition curve. 

The phase of K„(/(B) for some frequency co{ is determined by the phase of 
the denominator in the right-hand side of (3.89) at that frequency.    But at 
the given frequency an the denominator of (3.89) is equal to the segment be, 
and the phase of (3.89) at that frequency is a(cof) (see Figure 3.6). 

The corresponding phases are thus determined for all the frequencies, 
and the entire phase-angle plot of a closed-loop system is obtained.    The 
real frequency response P(io) is now found without difficulty.    At the 
frequency coj we have 

ab 
/5K) = -rrCOsa(<o/). (3.92) 

Dropping a perpendicular from the origin (Figure 3.7) to the segment be, 
we obtain from (3.92) the real frequency response at CD;: 

P(»,) = be (3.93) 

The value of P(o>) is obtained by similar geometrical constructions at 
any frequency, and the entire closed-loop real frequency response is 
recovered. 

Note that the imaginary closed-loop frequency response is also obtained 

without difficulty; to this end, it suffices to take the segment ratio -^-(Figure 3.7), 

This method of construction establishes a relationship between the 
closed-loop real frequency response and the D-decomposition curve.    We 
shall now formulate some quality indices and show how to find them directly 
from the D-decomposition curve in the K plane. 

Pfuli 

ImH 

FIGURE 3.8.    Illustrating the definition 
of the positive-response bandwidth. 

FIGURE 3.9.   Estimating the positive-response 
bapdwidth from the D-decomposition curve. 

The positive-response bandwidth is defined as the range of frequencies 
from  <B= 0 to the frequency at which the real frequency response crosses 
the frequency axis for the first time (Figure 3.8).    Putting wc for this 
crossover   frequency, we write for the control time t 

t> (3.94) 
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The positive-response bandwidth is obtained from the D-decomposition 
curve in the following way.    A perpendicular is erected at the point Ka to its 
intersection with the D-decomposition curve.    The frequency on at the 
intersection point gives the upper bound of the positiveness range (Figure 3.9). 

Other quality indices are similarly obtained from the properties of the 
real frequency response: 

(a) For a time function   x(t) to monotonically approach a  steady- 
state value   x(aa),   it is necessary (but insufficient)  that the  D-decom- 
position  curve  in the K plane does not meet the  circle of radius 

f_/Co + l. centered at the point  K"~X   (Figure 3.10). 

(b) For the overshoot not to exceed 18% it is necessary that 
(1)   the magnitude of the vector from the origin to the D-decomposition 

curve should increase steadily as the frequency increases from 0 to oo 
(Figure 3.11); 

Ko-1 is  I i 

(2)   for a given Ko the circle of radius     °j    centered at should 

not meet the D-decomposition curve; 
(3)   the projection of the vector aa>; (Figure 3.11) on the K axis should 

not exceed Ko for co->-oo. 
(c)   If the initial section of the D-decomposition curve is sufficiently 

close to an arc of the circle of radius     °J   centered at —^— the distance 

between the circle and the D-decomposition curve subsequently 
increasing (Figure 3.11), the transient time is between the limits 

<t< 4n (3.95) 

where mc is the crossover frequency. 

Im* , 

FIGURE 3.10.    Determination of necessary 

conditions for no overshoot from the D- de- 
composition curve. 

FIGURE 3.11.    Determination of 
quality indices from D-decompo- 
sition curve. 

It is significant that the above-described properties of the D-decomposi- 
tion curve are directly related to the magnitude of the total system gain. 
A number of conclusions can be drawn on the basis of these properties. 
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The following corollary obtains from property (a) above: if for reasons 
of precision the total system gain is greater than the diameter (K0+l) of 
the circle,  the transient process cannot be monotonic.    From property (b) 
we have two corollaries: 

(1) To satisfy the sufficient conditions for overshoot not exceeding 18%, 
the system gain should not be greater than the part of the diameter (Ko+l) 
to the right of the semiaxis Re ^(Figure 3.12). 

(2) Overshoot will not exceed 18% irrespective of the actual gain if 
the D-decomposition curve coincides with the imaginary axis in the K  plane, 
and the entire positive real axis belongs to the region of stability. 

ImF >, 

FIGURE 3.12.    Illustrating the determination 
of conditions for overshoot not exceeding 18% 

Imz *LM">Mt 

FIGURE 3.13.    Illustrating the construction of the 
closed-loop frequency-response characteristics 
from D-decomposition curve and auxiliary curve 
(the auxiliary curve is independent of T). 

A corollary which follows from the method of construction of the 
positive-response bandwidth has a considerable bearing on the evaluation 
of the control-system structure.    It is easily understood that the upper 
boundary of the positive-response bandwidth is always less than (oc,, 
where coc. is the frequency at the intersection of the D-decomposition 
curve with the K axis (Figure 3.12) and K=KC, is the critical gain.    This 
corollary will be applied at a later stage to derive some very important 
conclusions concerning the efficacy of control structures. 

We have already emphasized that the above properties of the D-decompo- 
sition curve pertain to the case of symmetric transfer functions.    Let us 
now consider some quality indices of a system with an asymmetric transfer 
function (3.82).    First, we construct the real frequency response of the 
corresponding closed-loop system. 

Since external disturbances and initial conditions do not influence the 
characteristic equation,  the general gain-phase characteristic incorporating 
external disturbances and initial conditions has the form 

K(M-- 
wl (ja) 

*+ Q(M 
R(M 

(3.96) 

The numerator of (3.96) we call equation   of   the   auxiliary   curve. 
In this more general case, the determination of the system properties is 
based on the D-decomposition curve and the auxiliary curve.    It follows 
from (3.89) that the auxiliary curve is also required in the symmetric case, 
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whenever the relevant index is not the gain but some other system para- 
meter.    The frequency responses (the real response included) can be 
easily constructed once the D-decomposition curve for an arbitrary 
parameter T and the corresponding auxiliary curve are known.    Figure 3.13 
is a probable form of a D-decomposition form in the x plane.    It fallows 
from the preceding and directly from Figure 3.13 that the vector be gives 
the amplitude value of the denominator in (3.96) at the frequency co;: 

r-        i   Q (M bc = x-\-*KJ ' «(» 

The phase of the denominator in (3.9 6) at the frequency co; is the angle a((Oi). 
Let the numerator in (3.9 6) be independent of x; a probable auxiliary 

curve for this case is shown in Figure 3.13.    We further assume that 
the numerator for Wj is represented by the vector ad.    The phase of the 
numerator at this frequency is ß(coi).    The amplitude value of (3.96) at the 
frequency <oj is given by the ratio of the corresponding segments: 

RU«>) 
L ,  QW | be 
I"1" «(/*>) 

The magnitude of (3.96) at any other frequency is obtained similarly, and 
the entire gain response corresponding to (3.9 6) is thus recovered. 

The phase of (3.9 6) is the phase of the numerator minus the phase of 
the denominator.    The real frequency response at co,- is obtained as follows. 
The vector ad is translated from point a to point c (Figure 3.13) and the 
vector be is continued as is shown in the figure.    The phase of (3.96) at the 
frequency an is then Y(<°ih  since obviously 

vW = PW- «(»/)• 

The real frequency response at the frequency to* is 

cd 
be cos 7(0.;). 

Dropping a perpendicular from the tip of the vector cd' to the dashed 
line, we obtain for the real frequency response at G>, 

*<»«> = ■&■ 

The real frequency response at any other frequency is obtained in a 
similar way,  so that the entire frequency response of the system is recovered. 

If the auxiliary curve is dependent on the parameter x,  we proceed as 
follows.    The numerator in (3.96) is partitioned into two parts, one 
independent of x and the other a function of x.    Equation (3.96) is then 
written as 

W^'^^. (3.97) 
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Figure 3.14 shows the ^-decomposition curve in the x plane and the 
curve W3(/<B). We now choose any particular value of r, say T=1. We 
can thus find the vector T^I/'IO) for any frequency a,-.    These vectors are 

plotted as in Figure 3.14.    A choice 
of any other numerical value for t 
only alters the scale of the vector 
xW2(jbi).    For the given value of T, 
the magnitude and the phase of the 
numerator in (3.97) are represented 
by the vector joining the origin with 
the tip of the vector TW2(/OO) at the 
corresoonding frequency.    From this 
point on, the construction of the fre- 
quency-response characteristics 
proceeds as before,  in the case of 
T -independent numerator in (3.96). 

The method proposed for the 
construction of the real frequency 
response suggests the following 
properties of the D-decomposition 
curve and the auxiliary curve, which 

are useful in the preliminary evaluation of control properties. 
A.    The positive-response bandwidth is determined by the frequency  a>„ 

at which the numerator and the denominator vectors assume a mutually 
perpendicular orientation for the first time.    The transient time in this 
system, as we have already indicated,  is 

FIGURE 3.14.    Illustrating the construction of 
closed-loop frequency-response characteristics 
from D-decomposition curve and auxiliary curve 
(the auxiliary curve is dependent on T). 

t> 

If the crossover frequency coc is known, the value of T for which coc 

determines the positive-response bandwidth is found as follows.    Draw 
the numerator vector aN at the frequency (oc (Figure 3.13).    From the 
point Mo of the D-decomposition curve drop a perpendicular on aN.    The 
segment ae is the required value of t. 

B. If in some initial frequency range the magnitudes of the numerator 
and the denominator and the angle Y(O>) between them remain virtually 
constant,' and if subsequently the ratio of the two magnitudes decreases 
while the angle Y(O>) does not decrease, the control time lies between the 
limits 

— <*<—. 

C. The sufficient conditions for overshoot not exceeding 18% are 
satisfied if condition B is met and the numerator and denominator are not 
mutually perpendicular at any frequency. 

D. The necessary conditions of no overshoot are satisfied if, for 
respectively equal distribution of frequencies along the numerator and 
denominator curves, the magnitude of the numerator decreases faster 
than the magnitude of the denominator at the corresponding frequency. 
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The above properties of the ^-decomposition curve (in the case of a 
symmetric closed-loop transfer function)and the properties of the D- 
decomposition curve and the auxiliary curve (in the general case of an 
asymmetric closed-loop transfer function) will be used in the sequel. 

Our estimates can be extended without difficulty to multivariable 
control systems.    At the present stage, we consider the case of a bne- 
parameter ^-decomposition curve.    In the next chapter it will be shown 
that the dynamic properties of control systems can be evaluated using 
the £>-decomposition curves for subsystem parameters. 

In Chapter Two we derived a general expression for the /-th controlled 
variable in the most general case of interaction through the plant,  the 
control, and the load.    This expression has the form 

Yj (/>) = {{ (- l),+JAu (p) [Kt mYt rcf (p) +gu (p) f, (p)] + 

+ 2 [(-n'+'A, (P) S bik (P) ft (p)j + 

+1 [(-D'+% (/» jj Cu (p) r„ ,AP)] } • (2.34) 
*+3 

The characteristic equation of a multivariable control system is 

A = 0. (3.98) 

Suppose that we are concerned with the influence of the parameter tj 
of the /-th subsystem on the dynamic properties of the entire multivariable 
control system.    Note that the parameter rt is a linear term in equation (3.98). 
Under these conditions, equation (3.98) may be written in the form 

TAI+SM-I)'
+
'=O. 4) 

(3.99) 

whence follows an equation of the D-decomposition curve in the xt   plane 

(3.100) 

24//(-D'+> 
J±l  

A« 

Dividing (2.34) by Ytn!(p) and making use of (3.49), we write 

Ydp)        (-l^Alj(p)[Kilot + gll(p)-^.} + 

* + 2^H)'+1 

m 

+ 2   (-«'^«StaW-Ägr+S (-D'+'ilwWjJCaW-g *t rcf (P) 

* = 1 
rcf(p) 

T/4«+SAy(-l)'+1 
(3.101) 
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Dividing the numerator and the denominator in (3.101) by A« and putting 
p=/(B, we write 

where 

Wm (M = (-D,+% (M [K, «+*,, (/») T^S)]+ 

+s [<-i>,+%/ w i *» CA») -Äjgj]+s (-l)'+%(>)2c,ft(/co)-%^g 
*=1 

is in fact the equation of the auxiliary curve.    We easily see that 

Ot/(y<»)= 
2  M-i>'~' 

is the equation of the D-decomposition curve (apart from the sign). 
All the previous results concerning the application of D-decomposition 

and auxiliary curves for the evaluation of dynamic properties of single - 
variable control systems can thus be extended to multivariable controls. 



Chapter Four 

GENERAL PROPERTIES OF MULTIVARIABLE 
CONTROL SYSTEMS WITH INFINITE-GAIN STABILITY 

§4.1.    DERIVATION OF THE GENERAL EQUATION 

(a)  PROPORTIONAL SYSTEMS 

In the previous chapter we established general rules for the design of 
multivariable control systems which permit indefinitely increasing the gain 
of the various subsystems without losing their stability as a whole.    The 
fundamental properties of these infinite-gain stable systems can be 
determined by examining their matrix equation. 

Rtlp) 
e,-~® *i 

>■-*■> 

A.   ft 
Qi<P>   y! 

> 

Ki 

Di(p)e yiP 

n < 

> 

*<*,>& 
**1 

i<Pl 
Fmt(P> 

FIGURE 4.1.   Illustrating the derivation of multivariable control 
equation: proportional systems. 

Suppose that the controlled variables are coupled through the plant and 
the measurement devices.    Figure 4.1 is a block diagram of the prototype 
system analyzed in this section.    Stabilization is provided by an elastic 
negative feedback element connecting the plant output with the input of 
the measuring device.    Alternative feedback configurations will be con- 
sidered in what follows.    The essential point is that this system belongs 
to the class of structures with infinite-gain stability. 

It follows from the results of the preceding chapter that the system 
depicted in Figure 4.1 must satisfy the following structural conditions: 

1)   The polynomial alk(p)aki(p) is of lower degree than the polynomial 

2) 

DdP)Dk(j>). 

nt— m;-r-r,-|-?;<2, 

(4.1) 

(4.2) 
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where nt, m„ rt, q, are the degrees of the polynomials   F„,(p), Fmi(p), Ri(P) and 
Q(p) ,  respectively. 

We now derive the equation of the system in Laplace transforms. 
A.    The equation of the controlled object 

Dt{j>)e,mrl(p) = K, y'i(P)-11itAP)y,(p)+!i(p) (4.3) 

B.   The equation of the measurement device 

/?,(/>) *;=,!, yltjp) - y, (p)+Sr'* (/») <y»,«w -Y* (/»)) - ^ä y\ u» .     (4.4) 

C.    The amplifier equation 

X"l(p) = KuX'l(p). (4.5) 

D.    The controller equation 

(4.6) 

Eliminating Y\(p), X\(p) and X"t(p)between equations (4.3)—(4.8), we 
obtain after simple manipulations 

\D, (p) R, (p) Q, (p) Fml (p) exf + nfitK, fit (p) Fnl (p) er'"+ 

+ K,KtM,Fml (/>)] Y, (p) +  KfoKubf,, (p) 2Jr„ (p) + 

+ KlRl(p)Qi(p)F„i(p) 2a,»(/>) Y>(P) + 

+ KpfiiKt aFmt (P) 2o„ (/>) Y„ (p) = K,tf, .HA/»., (P) YM(p) + 

+ K,Kla\LfilFml(p) 2rll!(p)Ylref(p) + KlRl(p)Ql(p)Fm!(p)fl(p)+ 
ft = l 
"¥■' 

+KvfilKlaF„l(p)fl(p)      (/= l, 2 n). 

We introduce the following notation: 

O, (P) Rt (p) Q, (p) Fml (p) «V = a, (/»); nA^i. - K, st , 

A U>) Fnl (p) S>p = bt (p);   KtKt An, = Kt tM, 
tfifl, (/>) Q, (/>) ^m/ (/») = C( (P); a, (p) + K, „ 6, (p) + 

+ K/.o/?
mi(/>) = «„(/>)■ 

(4.7) 

(4.8) 
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Now equation (4.7) takes the form 

Kiwfmi (/>) 2 rlk (p) + Ci S <*,* (P) -f 

+ KnoJ'ni(P)2*l>(p) ft«! >'»(^) = A'(,M/
:'m;^)K,ref(/.) + 

+ KitmFml (p) gru (P)rl,t,(p) + ctfi (p) + KlmF„, (p) f, (p). 

The complete set of equations is obtained by putting /= 1, 2,. . . 
The complete set of equations can be written in matrix form: 

(4.9) 

Here 

AY = (KtmFm + B)Ytc! + NF. 

<*i (p) + K, „ *,(p)+   K,mFml (p)rl2(p)+ ... KltmFm, (P)r,„ (p) + 
+ KM,Fm (p)        + K, tmFm (p) + + Kt,mFnl (P) + 

+ Ci(p)a]2(p) +Ct{p)a,„(p) 

KnoiFmi (P) rtl (p) +   at (p) + Kt „ h (p) + ... KimFmt (p) r,„ (p) + 
+ Kit*Fnt(p) + +KtmFm,(p) +(K,KtFni(p) + 
+ Ct(.p))an(p) +C,(p))ain(p) 

Kn,otFm„(p)rnl(p) + 
+ (K»,<«Fnn(P) + 
+ C„(p))a„,(p) 

■■"n(p) + K,,t0,ibn(P) + 
-\-KntotFm„(p) 

(4.10) 

KntFm z 

KitotFm(.P) 0 ... 0 
0 K2mFm2(p) ... 0 

0 

N = 

0 ... K„,orfm„(p) 

0 K,,oiFM (p)rn(p) ... KlmFml (/,)rtn(p) 
Ki,mFm (p) r2, (p) 0 ... KlmFm (p) n„ (p) 

Kn«J'mn(P)rni(p) ... 0 

Ci(P) + K,,o«Fni(P) 0 ... 0 

0 Ci(P) + K,t«Fn,<p) ... 0 

0 0 ■■■ cn{p) + K„, 

y>(p) 
.  K«= .    F= 

M/>) 
h(p) 

yn\p) Yn,AP) fn(P) 

(4.11) 

From (4.10) we obtain a general matrix equation for the vector value 
of the controlled variables: 

Y = A-l\(KmFm + B)YK! + NF\. (4.12) 

Further analysis requires explicit expressions for each j-th variable. 
This can be done along the same lines as in Chapter Two, where a simpler 
case was considered. 
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The system determinant A is 

A= 

",(p)+K,„  M/0+ KlmFmi(p)r,2(p)+   ... KMFm{(p)r,„(p) + 
+ K,mFm (p) + (KlmFnl (p) + + (KlmtFnl (p) + 

+ C, (p)) o„ (p) +C,(/>))a,„(p) 
K2mtFm2(p)r21(p) +   "2(p) + K2%t M/>) + ■ ■■ K2mFm2(p)r2n(p) + 

+ (K2atF„2(p) + + K2mFm2(p) + K2mFn2(p) + 
+ C2(p))a2t(p) + C,{p))ala(p) 

K„mFmn{p)rnl(p) + 
+ K„u>tF„n(p) + 
+ Cn (/>) o«i (/>) 

"n(P)+Knst *„(/>)+ 
+ KnmtFm„ (p) 

(4.13) 

The transpose of matrix (4.11) is 

<*i Q>)+Ki st »i (/>) + K2lmFm2 (p) r„ (p) + 
+ Kno,Fm, (p)        + (K2atFn2 (p) + 

+ C2(p))a2,(p) 
KlmFm,(p)r12(p)+  a2(p)+K2st h(p)+ 

+ (Kt ,„, Fnl (p) + + K2mFm2 (p) 
+ C,(/7))o„(p) A= 

KnmFm„(p)rm (p) + 
+ KntotFnn<.P) + 

+ Cn(p)anl(p) 
KmotFmn(p)rn2(p) + 

+ Cn (/>) an2 (p) 

KumFml(p)rln(p) + 
+ (Kn°tFnl{p) + 
+ C,«/>))a1„(p) 

■an(P)+Kn,<  >>n(p)+ 
+ K„, AP) 

(4.14) 

Making use of (4.13) and (4.14) and remembering how the inverse of a 
matrix is formed, we write 

A~l = - 

Au 

-A,, 

<,-\)t+lA« ... (-ly+'A, 

(-\)MAl2  ... (-\)»+*An: 

^(-1)> + 1    (-\)i+lAt, ... (-\)
n+lA, n) 

Am(-D" (-!)'■ 

(4.15) 

where ( — l)t+Mtj are the cofactors of the elements of the transpose. Carrying 
out the multiplication in the right-hand side of (4.10) and making use of (4.12), 
(4.13), (4.14),  and (4.15), we find 

An   -A„ ... (-1)'+1 An ... (-l)"^ 

-A12        A22 (-l)'+2^2  ... (-l)"+2^„; 

r,(p) 
YAP) i 

= X 

Yn(p) 

(-l)l+JA,j 

l-l)l+nAln 

. (-\)>+> At,  ... (-!)■ »+i . *nj 

...   (-I)'' 

X 

X 

Klmfml{p)YlKl{p) + KimPm,(p) 2 r,t{p) Ykre!(p) + 
2 

+ (c1(p) + KMFnt(p))f1(j>) 

KimFm2(p) Y2!tl(p) + K2,oiFm2(p) 2 r2k(p) Ykte,(p) + 
k=\ 

+ (c2(p) + K2lmFn2(p))!2(p) 

K,mFmJ (p) YJK,(P) + KJatKmj (.P) 2 rß (p) Yhn!(p) + 

n-1 

KntotFmn (p) Y„,tf(p)+Kn,0tFmn (P) 2 r"* 0>) Y* «f(?) + 
k=\ 

+ {cn(p) + KnmFm„(p))fn(p) 

(4.16) 
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Performing the matrix multiplication in the right-hand side of (4.16), 
we find 

+ KtmPmt(p) 2 r« (p) Ykrcf(p) + (ct (p) + K,mF„i (p))/,(p) 
*=2 J 

J; <-n!+< AU   KimFml (p) rlref(rt + 
/I 

+ KfnA* (/>) S r'K (P) Y»,*U>) + (C, (p) -f K,mF„i (p)) f, (p) 
S#2 

M/>) 
Y,(p) 

Y)(P) 

Yn(p) 

2<-i)'+'^/[ KltmFmi (P) Yltei(P) + 

+ K-lmFml (p) 2 r,k (p) Yk n,(p) + (C, (p) +KlmFn, (p)) f, (p) 

\K!t0,Fmi(p)Ylrcf(p) + 

»-1 -i 

+ KimPmi (p) 2 »•-.*0>) Yt,tf(p) + Vi (P) + KlmF«i (p)) f,(p) 
*=i J 

(4.17) 

We have thus obtained equations for each /-th controlled variable in an 
«-variable system with plant and transducer coupling: 

W = -5-2(-l)'+lily KlMFMl(p)y,^(p) + 

+ Ki mFml (p)2o, (/>)YM(p)+(Ci (p)+KlmF„, (p)) ft (p) 
*+j 

(4.18) 

Equation of the controlled variables in a system with plant coupling only 
is obtained from (4.18) by putting rik(p)= 0. 

The equation of the /'-th controlled variable of an n-dimensional servo- 
system can also be derived from (4.18).    It suffices to put in (4.18) aih(p)= 0 
(remember that A and Aik are dependent on aik(p) and rik(p)). 

The structures corresponding to integral   (or floating) systems 
of necessity contain at least one integrating element which is not included 
among the structural components of the plant and which is not enclosed 
by the stabilizing loop /39/.    The structure shown in Figure 4.1 thus 
corresponds to a multivariable system with proportional   subsystems, 
since the stabilizer embraces the entire forward path, with the exception 
of the controlled plant itself.    For the steady-state case we have 

a,(0)=l;  M0) = 0;   c,(0) = *,;  Fmt(0) = l;   F.,(0) = 0, (4.19) 

and the j-th controlled variable under steady-state conditions is thus 
expressed by the equation 

yj<P) = j:2i(-Vi+'A>j(0) K,„YMm +*i« 2>^«f(0)+*Gf; (4.20) 
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where 

A.= 

A0 = 
* "T A1 tot                Al tot^lÄ -f" 0 

AatotrjtCtai              1 H~ A'atoi 

12  ...  ^ltot^inH-ttin 

• • ■ Aatot^an + Oan 

1 
K 

Arttotrni ~rttHi 

"T Altot              A2tot^2i "T^ai 

1 tot^ta + «12       1 + A** tot 

l-j-ZC/itoi 

• • •         Kntotrni "T"a/ii 

A/itot^na ~ra/i2 

K 

K 

itot^iy + aiy l + A*/t«   A'/itot'*ny + 0/iy 

itot^tfl-rOi/i 1 + /C« to 

(4.21) 

(4.22) 

All 4i;(0) can be found from (4.22). 
The steady-state value of any /-th variable can be obtained from (4.20). 

As an example, let us consider a system with three interrelated controlled 
variables.    To find the steady-state value of the second, we write 

y2(0)=^i(-if+'At(0) 
ft= 1 

A.H 

1 -f- A*| tot 

A*2tOtr2l ~h°21 

A*3totr3l -ha31 

l + A'I tot 

'Citotria~hai2 

Kitot^ia + Oja 

A*l tot r12 4* °12 A'ltot f\3 + «J3 

1 -|- A*2tot      A*8tot^23 H~ «23 

A3tot''32~i~a3* 

A'ltot r2I -|-a21 

1 + ^3 tot 

A'atot^si -f~a3i 

1 -j" Ajtot     A8totr82 ~f~ a32 

A*2totr23 + a23 I + A:,, 

whence 

Aj2 — 

AWSI -f- a21   /Cj[o[r3i+a3,     I 

'GtotrS3 + aj3 1 + Kswt I 

l-j-'Cltot     AVot^l-ha3l 

K|tot'-ia + 0|j l+AVot 

* "T Al tot     Ä2totrSl -\~ «21 

Altot ^13 "T al3 A2totr23 H" <*13 

(4.23) 

(4.24) 

(4.25) 

(4.2 6) 

(4.27) 

Substituting (4.27) in (4.25), we obtain after simple manipulations 

Y* (0) = -^ { - [(K2to,r21 + <*2i) (1 + *.„) - 

— (K2mra+OJJ) (A"3,o,r3I + o^)] X 
X I*f,„I',re, (0) + K, „ (r21Klref (0) + r23K3ref) + KJi] + 
+ [0 + Knot) (1 + Äi«) - (*,„/■« + «y (A"3,„,r31 + %)] X 
X \Ka„Y2 re( (0) + K2 ,„, (r2IK, ref (0) +- r^ ref (0)) Kj2] - 
— [(1 + AT,,»,) (ATato,^ + <x23) (Klmra + a,3) (Ä"2,0,r21 + a23)] X 
X [WwW + ff.™ (^i^uef(0) + r23K3ref(0)) + *y3]). (4.28) 

The steady-state value can now be calculated if the numerical values 
of all the parameters are known.    Furthermore,  some general properties 
of these systems under steady-state conditions can be established.    An 
interesting particular case is provided by an ordinary plant-coupled 
multivariable system having rih= 0 and by a multidimensional servo- 
system with a,Ä= 0. 
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Let us first consider an ordinary multivariable system (rih= 0).    Putting 
rik= 0 in (4.28) and (4.24), we find 

K2(0) 1 — 1(1 + ^3.0,) «21 - a23«3l) X 1+fltot <*12 013 

a21 I +^2 101 023 

°3i a„ 1 + ATstot 
X IKtJTt ,ef (0) + KM + [(1 + Klm) (1 + Ktm) - aI3a3I] X 

X IK, JT, re,(0) + KJt] - [(1 + Klm) «23 - a13a23] x 
X[/C3totK3ref(0) + Ar3/3]]. (4.29) 

Dividing the numerator and the denominator in (4.29) by K,taKimK3m and 
taking /Ci,„, = Ar2tot = A'3,„[-*c>o) we find 

lim K2(0) = K2tef(0). (4.30) 

It is clear from (4.30) that the accuracy of each controlled variable 
increases as all the subsystem gains are increased.    In the limit Yt= VW: 
moreover,  the coupling between the individual controlled variables 
vanishes in the limit and they become independent, noninteracting. 
This result derived for the particular case of a three-variable system 
is readily generalized to any multivariable control system.    Indeed, 
in the nonsingular case the rank of the determinant Afj is one less than 
the rank of the determinant A0n and the maximum number of factors Kim in 

It 

its expansion is      TJ.KkK<.    This product is further multiplied by Ar,I01K,ref 

so that 

lim     yj(0)-*Vj!c!. (4.31) 

/=i 

Increasing all the subsystem gain parameters (which in this case is 
structurally permissible without loss of stability) thus ensures that the 
controlled variable retains its steady-state value to arbitrarily high 
accuracy and that the /-th controlled variable is independent of all the 
rest.    If the gain is high but finite,  the steady-state accuracy is not ideal, 
and uncoupling is achieved to accuracy of e (we shall refer to it as e- 
uncoupling).    The value of e can be determined if the numerical values of 
all the parameters in the equation are known. 

As an example let us determine the steady-state value Yt(Q) in the 
particular case of a two-variable control system with the following 
parameters: 

ff, = 500, AT2 = 500, a12 = a2I = 0.5, /,= ., f,= l, /f,==2, tf2 = 3. 

From (4.20) for «=2 we have 

™-£ S(-D,+,i4,,(0) lKiwtVi,^+Ktfi]- (4.32) 
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Substituting, we find 

l + Ki 
„      ""     1    p   &- = (1+^1 tot) (l+^2.ot)— a12a21> 

l-j-^ltot °21 I 

All=\-\-K2mi<      .rtl2 = 012> 

1(1 +^'2tol)(/<'llot^lref+^lfl)" 

A'« = l 

^io(O)— (l + /C„„,)(l + /Cs,o,)-a12a2. 

(i + K,m) (K,,myM< + KJ, — naiya,My»ref(0) -qaiA:afa) _ 
~~ (l + KitotMl + Katot) — ai!«2i 

250 500Ki„f (0) + lOOO/i — 0.5 ■ 500Katef (0) — 1.5fa 
— 25100 — 0.25 

= 0.99Kire,(0) + gay fi — 55TÖÖ ^' (0)— 251ÖÖ ^ 

It follows that already for Kwt = 500 the effect of extraneous parameters 
(i.e., the effect of coupling) in plant-coupled multivariable control system 
is vanishingly small under steady-state conditions. 

Let us now consider the case of a three-dimensional servosystem. 
All am are zero,  and the determinant is 

(4.33) 

(4.34) A,- 

1 -f'Cltot /Cl tot r12 ^It0trl3 

A2tot'*2l l + K2m K2 tot r2 3 

A3 tot^31 Kziotftf 1 + ^3 tot 

1 + K\ tot A*2tot/*21 A Stölzl 

^Cltotr12 1 "f~ K2 lot A3 tot ^32 

^Gtot'*l3 ^2totr23 1 ~T A 3 tot 

The properties of the controlled variables can be elucidated for the 
particular case of Ki(0).   Aiu Azi and A3l are required for the analysis, 
and from (4.34) we have with proper signs 

I+/C2 tot     /C3tot'"32       I 

/GtOt^ 1 +^3tot   I ' 

I Kltm1"!!     ^3tOtr3a      I (4   35) 

A.= 

^31 '— ^itot^is    Asto!^     I 

K,(0) = 
1 X 

1+Kitot     ^ltot'*12        Kltotrl3 

^2tOtr21 l-j"^2tot      ^2tOtr23 

^3tOt'*31 A3totr32 l-T'VStOt 

X ([0+#2tot)0 4-fsioi)-•fjiot^3ioi''s3r32][fltotJ/'lref4-fliotX 

X (^Kjtef+ris^tefJ + ^lA] —[^ltotr12(l + A'stot) —^'ltot'<'3tot''l3r32] X 

X [A^tot^tef + ^2 tot(r21^1tef + 'ra^ref) + ^2/2] + 

+ [KlmrliK2mrZt — flioi/ia 0 "I   A2tot)] X 

X [/^tot^ref + ^tot (r31^1ref+'-32' 2tef) +A3;3l)- 

yi(0)can be found from (4.35') if the numerical values of all the parameters 
are known.    The degree of influence of the other inputs (the extraneous 
reference values) depends on rih.    It is also clear from (4.35') that increasing 
the subsystem gains does not decouple the system. 

(4.35') 
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(b) INTEGRAL SYSTEMS 

Let us now consider a structure with integrating (floating) control. 
In Figure 4.2 the stabilizer embraces only part of the forward path, 
which does not include the measuring device.    For integral control it 
is necessary and sufficient that the self-operator R'(p) contain an integrating 
element,  i. e., R'(p)*=pR(p) .    We now write the equations describing the 
transient and steady-state properties of this configuration. 

Mi *t 

'^H2>- 

      fi 
*j(p)      ,    Kit       „   Ojlp)      , 

> XJ 

n 
£ rin */t 

H4i 

> a- > 
Dt(p)e *,P 

< 

> 
n 

Fni(pl 

Fmi<P) 

y'i(p)-'Z'>.llt(p)+jl(p) 
k= 1 

FIGURE 4.2.    IHustrating the derivation of multivariable control 
equation: integral systems. 

The plant equation is as before 

Di(p)ri(P) = Kle-r'p 

The equation of the measurement device 

x\ (P)PR, (P)=is [[rlrjp) - y, (p)\ + 2 rik (P)[y,re!(p)-yt (/>)]). 

The amplifier equation 

The controller equation 

Qt(p)yl(p)^^';(P). 

(4.36) 

(4.37) 

(4.38) 

(4.39) 

Eliminating   Y',(p\ X\(p) andX"(p) between (4.36) —(4.39), we obtain 
after simple manipulations the following equation for K,(p) : 

[D, (p) R, (p) Q, (p)Ful (p)pe*'p + K,.Wi (/») Qi (P)PFn, (P) ex'p+ 

+ K,K, W«i (/>)] y, (p) + v,K, ,KfitPml (P) 2 rlk (p) Yk (p) + 

+ KtR, (p) Q, (p) pFml (p) S alk (p) Yk (jp) + 

+ Wi .Kfi, (p)pFnl (p) S alt (p) y„ (p) = 

= K,K, Mfmi (P) Yi . (/») + Kp,Ki AFm, (P) 2 ru (p) Y, „,(/>) + 
*#' 

+ Kl\Rilp)pQl(P)Fml(p) + Rl(p)pFnl(p)t>iKlMl(p). (4.40) 
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Putting i= 1, 2,. . ., n, we obtain the complete set of equations which 
describe the dynamic properties of the multivariable structure under 
discussion.    To reduce the set of equations to matrix form, we write 

Dt (p) R, (p) Fmi (p) per<p = at (p),   b,K,.=K, „ 

Ri(p)Q,(P)Fnl(p)per'p=bi(P), 
Ri (P) Fm (P)P = gi (P).   K,K, Mi = Klm, 
KiR,(p)pQi(p)Fml(p) = c!(p), 
a,(p) + K, „ bi(p) + KUmFml(p) = all(p). 

The equations can now be written in the form 

a-u (P) Yi (p) + K,„Fm, (p) 2 ru (p) Yk (p) + 

+ e, (p) 2 ««(P) Y„ (p) + K, . AT,ft (p) 2 a„ (p) K6 (p) = 

= KltmFml (p) Ylrtf(p) + A-,,.^™,(p) 2 ris 0») r,tef(p) + 

■+[«<(P)+ *<*«.< ft lP)l//(P)       (« = 1,2 a). 

or in matrix notation 

where 

AY = BY,cf + CF, 

«11 0?)     Alt •••   flln 
ßj, as2(p) ... Rln 

«m ..■ ««nO») 

/?« = /flw.^1 (P) *■« + («1 (P) + #1*1 « ft (P) ) «12 (P). 

/?i« = Ki^i (P) rln+(c, (p) + KtKt « ft (p)) alB 0»), 

#21 = ^2,0,^2 (P) ''SI + (Cj (P) + #2*2 « ft (P) «21 (P). 

Rin = K*°rFm2 (p) r2n -+• (c2 (p) + #2*2 ., ft (P) ) «2» (P). 

tf „i = V« (P) rKl (p) + (c„ (p)+KnKn „ ft (p)) a„, (/>). 

I/Ci tot^ral (P) *i tot^mi (/>) r,, (p) ... /fi ,„,^1 {p) r,„ (p) 
K2mFtm(.P) KltotFml(p)    ■ ••• KimFm(p)r2n(p) 

Knmfmt IP) I'm ••■ •■■ KavxPmn (/>) 

Ci (P) +K,K, « g, {p) 0 ... 0 
c= o '»(ri+KiKi s,g,(p)... o 

0 0 ... Cn(.p)+Kr.Kn Kgn(p) 

(4.41) 

(4.42) 

(4.43) 

(4.44) 

(4.45) 

(4.46) 

Y = 

y,(p) 
Y,(P) 

Yn(p) 

Y,C,= 

y„d(p) 

Yntd(p) 

F = 

h(P) 
M/>) 

fn(P) 

(4.47) 

We will now derive an expression for the /-th controlled variable. 
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From (4.43) we have 

y = A-l(BVrt! + CF). (4.48) 

Expanding (4.48) and proceeding along the same lines as in the previous 
case, we find 

2 (-l),+«MlpKpB)t/
f

ll,p W S 'P* iP) yk,«lP) 

Y=- 2 (-1)>+P AJfKQmF    (p) 2 rpS (p) Ykrcl(p) 
p=i *=i 

2 <-l)" + P U»f.pW 21 V <P) Yk,e,(P) 
p=l *=1 

2 (-D"
4

"
1
 
Ai<> (C

P (P)+VP s. *P (P)) fp (/>) 
P=I 

+: 2 (-l)p+; A}9 (<=p (p) + tfpKp „ *p(p)) /„</>) 

2 (-1)P+" 4,p(«p W + Vp n  *p (P>)fp(/>) 
p=l 

(4.49) 

Here all rtf= 1.    From (4.49) we easily obtain an equation for any j'-th 
controlled variable: 

ytW) =4-(il(-ir;^pfÄ'p.o,/:,
OTp 2r„» (p)KSref(p) + rCp (p) + 

+ ^ps,^(/')]/p(P)])- (4.50) 

In particular,  in a three-variable system, we have for the second 
controlled variable 

r2 (/»)=-s- (S(- i)'+p AP [w.p(/>) 2 r* (/») KP«f(p)+ 
3 I p=l L ,ft=l 

We write equation (4.51) in expanded form: 

au(p)   au(p)   «i3(p) 
a2l (p)   a„ (p)   a23 (p)   , 

«31 (P)     «32 (/>)     «33 (/>) 

«II (P)   «21 (P)   «3i(/>)| 

i4,=     «12 (P)     «22 0?)     «32 (P). 

«ls(/>)     «23(/>)     «33 (P) I 

(4.51) 

Here 

«12 (P) = ATLo./'ta (p) rw (p) + [c, (p) -f- Af,K, „ ft (/>)] o12 (p), 

«13 (/>) = fiio. Pun (P) ra (P) + fo (P) + KiKi SI ft (p)] a13 (p), 
«21 (P) = K*mF7m (p) r21 (p) + [c2 (p) + K2K2 „ ft (p)] a2I (p), 

«23 (/>) = ^.c^rn (P) z-23 (/») + [c2 (P) + AyC2 „ g2 (p)] a23 (p), 
«3i (/>) = ^3to,^3m (/>) 'si (p) + [c3 (p) + ^3AT3 „ g3(p)] a31 (p), 

«32 (P) = ^Stot^Sm (/>) 'iB (P) + [C3 (P) + K3K3 „ ft (p)] a32 (p), 
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whence 

where 

and 

^21   
«33 (P) 

| an (P)   fii2 

R9, /?no 

au(.P)   «12 

a33 U>) 

R21 = ^„,,^2 (/>) y21 (/>) + (Cs (P) + K2K2 

R3l = #3.0.^3 (/») r81 (/») + (C3 (/>) + ^3^3 

#23 = ^2.0.^2 (/>) ^3 (/>) + (Cl (P) + ^2  „ 

* H = ^2,0,^.2 (/») rn (P) + (Ct (P) + K2K2 

R'n = KiJ** (P) ra U» + (Ci (P) + *,*, 
#22 = K2mFm2 (P) ra (p) + (<?„ (/>) + K2K2 

#;;=^»,^3 (p) ^ a»)+e» w+K& 
Rn = KlJFM (P) rB (p) + (c, (/>)+*,*, 

,.ft(/>)Kifa) 
„ ft (P) ) «31 (/>). 

f<2g2(P))°-l3(P)< 

„ ^1 (P)) «,3 (/»)• 

« 82(P))a2i(P)' 

ag3(P))a3l(P)- 

Y2 (P) = T f- (\K2mFm2 (p) rtl (p) + (c, (/>) + 

+ K2K2 „ ft (/>)) «21 (/>)] a33 (P) — [K2™Fm2 (P) r23 (p) + 
+ (c2 (p) + K2K2 „ ft (/>)) a23 (p)\ [K3tmFm3 (p) r31 (p) + 
+ fa. (P) + K3K3 „ ft (/>)) a,, (/>)]) {Kx„FmX (p)V, ref (p) -f- 
+ Ki mFmi (/>) rnYM (P) + Kt mFml (p) r13 (p) Y3 K,(p) + 

+ (ci (P) + Ufo . 61 (/>) f, (/>)) + (a„ 0») «33 (/>) - 
- [^1,0,-Pmi (/») ra (p) + (c, (/») + ff, sl ft (/»)) a„ (/»)! X 

X [^.c^s (/>) r« (/>) + (c3(p) + K3K3 K ft (/>)) a31 (/>))) - 
- (K2mFm2 (P) rn (P) YUAP) + K2aFm2 (p) Y2 ttt(p) + 

+ K2aiFm2 (P) r23 (p) V3 ,a(p) + {c2 (P) + K2 „ K2g2 (p)) \2 (p)) — 
— («ii (/>) \K2mFm2 (p) r23 (p) + (c2 (p) + 

+ #2 s. K2g2 (P)) a23 (P)\ — \KimFmX (p) r13 (/») + 
+ (c, 0») + ATi . tftf, 0»)) «i3 (P)] \K2lotFm2 (p) rn (p) + 

+ fe (P) + /fsAf2 „ ft (/»)) «2, (P)\) X 
X (^3,0,^3(P) Vn (P) Yu«(p) + r32(p) Y2rc!(p) + 

+ Y3,«(P)] + (c3(p) + K3K3ng3(p)f3(p))}. (4.52) 

The steady-state value of the i-th controlled variable can be readily 
found from (4.52).    First, however, we should determine Ajt{0) from the 
transpose making use of standard rules of matrix algebra. 

As an example, we calculate the steady-state value in a three-variable 
system.    From (4.52) we find 

Y2 (0)= -£- l(— K2toirnK3lM + Ä'2tot''23^3tot''3l) (AltotJ'lref + 

+ Kl[otr12''^2ref + K\mxrW 3ref) + (K\ aiK3 m — K\ io\''\3K3mxr3i X 

X \KlxmrW lref   I   'V2lot^2ref   I   KimTvtf 3ref) — 

(A 1 to|A2tot/'23        A ltot''l3'\2tot'"2l) X 

X (K3mruYiref+K3totr32i 2,et-\-K3tmY3at)}, 

where 
Altot Aitotr12    Aitor^ia 

Astot^ai     A2tot ^210^23 

Astot^l    ^tot^a    A3 tot 

(4.53) 

(4.54) 
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Thus, in addition to the general steady-state properties of the system, 
we have derived working relations for the determination of the controlled 

variables. 

§ 4.2.    SYSTEM DYNAMICS 

We now proceed with a discussion of the dynamic properties of pro- 
portional and integral configurations. 

(a)   PROPORTIONAL SYSTEMS 

The system depicted in Figure 4.1 will retain its stability when the gain 
parameters of the elements in the stabilizer loop are increased indefinitely. 
This structural property is expressed mathematically in the form (see (4.2.) 

«j—«; + ''( +?;< 2- 

Having chosen a stabilizer, we make connections that satisfy the 
structural criterion above and thus create a system which in principle 
remains stable despite an indefinite increase in the subsystem gains. 
To ensure realizability, the degenerate and the auxiliary equation should 
of course satisfy the stability criteria.    Since the structural stability 
requirement is a priori satisfied, we have to choose the stabilizer para- 
meters and the gains of the starting single-loop system so that all the 
coefficients of the degenerate and the auxiliary equation meet the respective 
stability criteria.    It is at this stage that we should take steps to ensure 
not only the stability but also the desired dynamic characteristics (speed 
and transients) of the control system. 

Let us consider the fundamental proportional-control structures.    It 
will be assumed throughout that the stabilizer uses passive elements only. 
For this reason the degree of p in the numerator of the stabilizer rational- 
fractional function is equal to or less than the degree of p in the denominator. 
In our nomenclature, we may thus write 

nl -Cm,, (4.55) 

From (4.2) and (4.55) it follows that the degree of the self-operator of 
the stabilized section must not exceed 2. 

We now return to equation (4.7) which describes the /'-th controlled 
variable of the structure shown in Figure 4.1.    Let each subsystem be 
made up of aperiodic and amplifying elements.    Condition (4.2) is satisfied 
in the following two cases: either the self-operators have the form 

R,(P)Qt(p) = (l + Ti,P)V + T,qp), 

or,  if one of the time constants is zero, we have a general self-operator 

of the form 

KI(/>)QI (/>) = (!+ 7». 
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In the former case 

n, — m, = 0, 

and in the latter it is permissible that 

n1—ml — \. 

Let us consider the first of the two cases.    Equation (4.7) takes the form 

\D,(P)[(1 + T„p)(\ + T,qP)eVf,((p) + Ki st Fnl(p)ertn] + 

+Ki , Ki ^«i (P)) Y, (p) + K,„Flm (p) i r,k (p) Y„ (p) + 

+ Q + Ti,PW + T„p)F,a(p)$i*lkip)Yt{p) + 
n*i 

JrKiilFnl(p)?lalk(p)Yk{p) = 
A= 1 

n 

= Kno,Fim (p) S rlk (p) Y„,et(p) + KtmFlm (p) Yttei(p) + 

**i 

+ V + T,,P)(\ + Tiqp)Fim(p)fi(p) + Kl stF!n(p)f!(p). (4.56) 

Dividing (4.56) by Kia and assuming a sufficiently large K, „, we put     '    -—m. 
Kin ' 

and write 
(A (P) [«i (1 + T, ,p)(1 +Tlqp)F,m (p) er'" + Fin (p)«V] + 

+ K, dcg Flm (p)}Yl(p) + Ki deg Fim (p) S ru (p) Yh (p) + 

+ m, (1 + T, tp) (1 + T, qp) Fim (p) ± aik (p) Y„ (p) + 
k-l 

n 

+Fln (p) £ *,„ (p) Yk (p) = Kt iHFlm(p) Ylrc!(p)+ 

n 

+ K, änFlm (p) 2 rlh (p) Y„rc!(p) + 
*=i 

+ m(\+Ti,p)(\ + Tiqp)Flm(p)f!(p) + Fla(p)fl(p). (4.57) 

We can now find the matrix equation of the output vector as a function of 
the small parameter m.    Putting 

m(1 + Ti,P)V + Tlqp)Fml(p)D1(p)ex',' = ma[(p),\ 

D,(p)Fu(p)exi' = bt(p), (4.58) 
m(l + Tiqp)(\ + Tt,p)Fim(p) = mCl{p)i I 

we rewrite (4.57) in the form 

[ma, (p) + bt (p) + Kt aigF,m (p)\ r, (p) + 
» n 

■+ K, deg Flm (p) Zi rlk (P) Yt (p) + mc, (p) 2 a,k (p) Yt (p) + 

n 

+ Fu (P) 2 «<* (p) Yk (p) = /fJ dcg F.m (p) r, ml(p) + 

+Ku.%Flm(p)±rik(p)Yk,Qi(p)+ 

+ me, (p) f, (p) +Fln (p) f, (p)       (/ = l, 2, ..., «). (4.59) 
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The matrix form of equation (4.59) is 

AY = K^FmY,ct+BY,t!+NF. 

Here 

A = 

B= 

ma1(p) + bl(p) + ... KllleiFm(p)rs„ + 
+ Kideg

/rim(/>) +1»«, (P) + Fln (P)] O.n 

KjtegFjm(p)r],+ ... KjjcgFjm(p)rj„ + 
+ [mcj (p) + Fjn (P) aj, (/>)] + [mcj (p) + Fjn (p)} aJn 

KntesF„m(p)rnl+ ... ma„(/>) + M/>) + 
+ l"ic„(p) + F„„(p)]a„, +K„ieiFnm(p) 

0 K, deg (P)Flm(p)r,2(p) ... K, degFim(p)rln(p) 
K» deg Fm (p) r„ (/>) 0                  ... K, deg Fim (/>) r2n (/>) 

KtesFnm(p)rtti(p) ...                  ...                o 

N = 

i"Ci(P) + Ft„(p) 0 

0 mc2(p) + Fln(p) 

From (4.60), 

0  "><*(/>) + F„„(p) 

Y = A-l\KiHFmYa! + BYM+NF\. 

(4.60) 

(4.61) 

(4.62) 

(4.63) 

(4.64) 

Consider the degenerate vector equation.    Since condition (4.2) is 
satisfied, we assume that the auxiliary equation of second kind meets 
the stability requirements and thus obtain the degenerate case from (4.64) 
putting m=0.    From (4.64), (4.63),  (4.62), and (4.61) we have 

where 

■ddeg — 

'deg — A deg (Ädeg FmY„.f + BYaf -\- Wdeg F), 

*i + f i deg^im Kideg'?im''ia-|-^ioais • • • Ki deg Fimrlie\-Flnaln 

Kn degFnmrnrT~Fnn0.n\ ... ... bn -f- Kn deg Fnm 

Wdeg = 

F,„   0     ... 0     | 

0       F2n...O 

0   '  '..'.   o   >' 

The transpose of (4.66) is 

.F> 

•" deg I — 

*l + K, deg F,m K, deg Plrn'M + Fa„a2l  ... Kn deg Fnm.rn\ + Fnlfl,„ I 

f i deg Flmrln -\- F,nain ^n + ^ndeg^nn 

(4.65) 

(4.66) 

(4.67) 

(4.68) 

The elements of ^Jg are found from (4.68).    Inserting the respective 
expressions for the matrices in (4.65) and multiplying, we obtain 

*Udeg —-^ltdeg ...(—1) ^ln deg 

r^ = T    (-1>/+I^.deg      (-D;+2-4/sdeg   ...   (~\)UnA]n 

(-l)I + n^ 

deg 

*flt deg .. A, nn deg 

X 
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X 

Ku^im^lrefH-Ki deg^n^^ier     +  •••  + Ki deg f\mr\n^nief + F\nf\ 

Ki deg^am^l^lrcf+Kg deg/?2m^'arcf+   •••   "f" ^2 deg ^2mr2n^nic:i~\' ^Infi 

Kn deg 'nmrnl M ref + •. • -f- Kn deg Fnm'n ref~r *nnfn 

in deg I K\i^Fun 2 ruYlK{-\-F\„f\ J-f- ... 

• +(—1) +"^l/i deg ( Kndeg./'nm 21 rni^ref+ /'nn/n 

(-1)' + 1 -4/. deg    K, deg ^im S r„K, „, + /=-,„/,   + . 
i = l 

•••  "TV     *) Ajn (|pp ( Knde.v Fnm   7\ rni* /refr 'nnfn 

(—1)"+    -4/ZI deg (Kl deg-^lm S rK^i rcf~l- ^ln/l) +   •■• 

... +-^/i^/i deg ^«m ( 2 rnlYl<tf-\- Fnnfn 

(everywhere rn = 1), 

whence follows the degenerate equation for the /-th controlled variable: 

r S (-D/+/ A;, deg k ^Flm £ r,pKp,cf+/>„/,!. (4.69) 

Comparison of (4.69), (4.50),  and (4.18) shows that these equations are 
identical.    They all have the same structure,  differing only in the numerical 
values of A, A^,  and other coefficients.    The expression for the full value 
of Yj (nondegenerate) is obviously of the same form as (4.69),  with the 
difference that its components include coefficients that depend on m.    Any 
of the controlled variables can be found from (4.69). 

Let us consider the properties of the degenerate equation for the first 
controlled variable in a plant- and transducer-coupled three-variable 
system.    From (4.69) for n= 3 we have 

M==X" [-"11 deg l'Mdcg'lm(' lrcf-T"'"l2' 2ref~l-''l8' Sccf)"T" "infll — 

[Kl deg^2m (r2l'l reff" 'S rcf~f" r23' 3ref) ~+" /j/1/2] + M2 deg 1^2 deg 

"+"-^13 deg I^3deg'73m(''31^1ref+''32^2ref+^3ref) + ''73«/3]]> 

Writing out the expressions entering (4.70), we have 

A,= ^2deg^2m'-21 + ^2na2\     ^2 ~f" K% deg^m ^2 deg^m^ ~\~ ^2na2i 

Ks deg ^Zm^ZX + ^3na31     ^3 deg FztnrM + ^3na32      *3 + Kz deg^Jm 

.        ^2 + K% degfam %Z degF3mr32-\~ Fzna$2 

I Ki deg^2mr2Z + ^2na2Z *3 4" Kz deg ^Zm I* 

.       I K\ deg^im^is-f- ^l/ial2 ^3 deg^sm^ "~h ^zna32 I 
12       I Ki deg^im^ia+^mOia *3 + ^3 deg ^3/1 I' 

.       I ^1 rteg^lm^ + ^ln0^ h + ^2 deg^2/n i 

I *\| deg"im'*i3~r ' lnal3 *^2 deg-< 2;nr23 ~h/?2oa23 I 

(4.70) 

(4.71) 

(4.72) 
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The first structural conclusion which obtains from the general equation 
for the /-th variable as determined via the degenerate equation (4.69),  and 
which is likewise applicable to any particular case of a degenerate system, 
is the following: a degenerate system of the given structure is characterized 
by a multicoupled dynamics. 

The coupling between the controlled variables in this case is determined 
by the properties of the controlled plant (the coefficients an,) and the 
additional interconnections artificially introduced into the system (the 
coefficients rik).    As regards transducer coupling,  it is artificial and is 
thus specified by the particular features of the technical problem at hand; 
the contribution from this coupling to system dynamics should thus be 
elucidated for each individual case separately.    Note that transducer 
coupling is introduced to ensure a certain resultant variation of all the 
controlled coordinates as a function of variation of each   individual 
coordinate.    This interrelationship ensues primarily from the fact that 
a change in any controlled variable modifies the setting for all the other 
controlled variables.    However,  as is clear from the expressions for A, 
system stability requirements should be kept in mind in choosing rih, 
since the characteristic equation   A= 0 depends on rn,. 

Let us consider three different cases for n= 3,  specifically (1) rjft = 0, 
aih =£0,  (2) r{h =jt0, art = 0,  and (3) rik =£0,   aih =£0. 

Case   1.  r,-fe=0, aik =£0. 
This case corresponds to an ordinary plant-coupled multivariable 

system.    From (4.70) we have 

" lrtf" 

+ F„. 
n3 

f+^JO-A^ 2deg^2m' 2rcf~ — A'12 

) + A'13 (K3 deg FimYi rcf+ F3JZ), (4.73) 

where 

A3 = 
*l + Ki deg Fim    F\n<*l2 Flna13 

Flna2\ i>l + Kl deg fim    Flna23 

p3na3l fsna32 l>3 + K3 deg Pirn 

-A» 
2 deg' 2m Fsrflsi 

^3 4* ^ 3 deg Fzm I ' 

rin<Xi2     f?3na32 I 

Fzrfiw      h + ^3 deg ^m3 I' 

(4.74) 

(4.75) 

(4.75') 

and 
F\rp-\2      b2-\-Kz deg^2; 

F\na\3      f*2na23 
(4.75") 

The closed-loop transfer function (not generalized,  so that   ft= 0) is 

^2 ref 0»)    i 

K(p)- 
y, (p) A'n (P) *i deg Fim (P) - Kl 0» «2ldeg F2m Ü» -pfgj^ 

((/>) 

+ ^»«3d^3mO»fe{f 
A3(/>) 

(4.76) 
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Let us find the expression of the D- de composition curve for the gain 
factor Kideg-    The determinant A is not affected by interchanging its rows 
and columns.    This transposition will simplify further manipulations, 
and we therefore write the determinant A' in the form 

A = *2 + Ki deg Fim    fsiflsi 
' 2na2: h+K. 3 deg r 3m 

(4.77) 

Expanding (4.77) in elements of the first row and making use of (4.75), 
we obtain for the characteristic equation of the system 

\bi (p)+Ki d.g Fim (p)] An (p) — Fin (p) a2lA'l2 (p) + F3n (p) a31 A[3 (p)] = 0, 

whence follows an equation of the D-decomposition curve for the gain K\iel 
of the first-loop degenerate equation: 

p        ,   . A'll (P) h (P) + Fjn (P) a3l43 (P) - fin (P) «21^12 (/>)    . (4.78) 

Dividing the numerator and the denominator of (4.76) by FXm(p)An(p), 
we find 

where 

K3(p)-- 

N(p) = 

M(p) = Kiit% 

Mp)   ^Kliei+N(p) + M(p) 

Ynef(P)  ~~ <f(p) 

An(P)Fim(P) 

^(pM"(p)-few 
Fim(P)*n(P) 

A'u (P) h (P)-F2n (p) a2i42 (p)+F3n (p) a3lA[3{p) 
i~ f,m(.P)A„(p) 

(4.79) 

Equation (4.79) fully specifies the dynamic properties of a three-variable 
degenerate system.    A similar expression can be obtained for a degenerate 
system of n plant-coupled variables.    By analogy with (4.79), we have 
for the n-variable case 

Kx(j>Y- 
YtiP)   _. 

*=1 
(P) 

YtrtipV ^1 deg ~\~ Rl deg 
(4.80) 

where 

M deg ' 

*i (/>) A'u (P) + S (~1)'+* *%»«*/ (P) 4*(P> 
 *±±  

PlmWA'uiP) 
(4.81) 
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Equation (4.81) is the equation of the D-decomposition curve for the 
gain factor /fideg of a degenerate «-variable system. 

In (4.80) and (4.81), A',j (p) is found from a determinant of degree n as 
previously in the particular case of a third-degree equation. 

Let us consider expression (4.79) in more detail.    For uncoupled 
controlled variables, 

a,7>=0 

and it follows from (4.75) that 

A'u = An = 0. 

Equation (4.79) thus takes the form 

Kl dee + ■ 

The denominator in (4.82) is a sum of Kijcg plus the equation of the 
^-decomposition curve for K)deg.    The numerator is Kideg alone.    We thus 
see that the /^-decomposition curve fully describes the dynamic properties 
of the system in this case /39/. 

Comparison of equations (4.79) and (4.82) shows that plant coupling 
always has a substantial influence on the dynamics of each subsystem. 
In the general case, the effect introduced by coupling may be advantageous 
(if coupling improves the dynamic properties of the given subsystem) or 
disadvantageous (when the dynamic properties deteriorate due to coupling). 

From the general equation of the transfer function of an «-variable 
system (equation (4.80)) we see that the dynamics of the j-th subsystem 
cannot be determined from the D-decomposition curve alone.    The D- 
decomposition curve should be supplemented in general by an auxiliary 
curve, the system dynamics being obtained from these two curves jointly. 
As an example, we shall calculate the fundamental dynamic properties 
of a two-variable system. 

From (4.80) we have for the first controlled variable ( n- 2) 

K f"»W   A"M   yird(P) 

K („\—   y>'M   - '"e8        F'm(P)   A'"iP)   Yl"fiP) (A   »<»\ 
ldes   p'      r„cf(P) bl(p)A'u(p)-Fin{p)A\,(p)<h 

l\\ deg "I ■  

Here 
An — b2 + Ki deg^m = Di (p) Fin (P) + Kl deg Flm (p), 

— An = — fin (P) «21- 
(4.84) 

Substituting (4.84) in (4.83) we find 

K   flm (P)  Ftnal2      Yl ref(P) 
If ln\-I±i£L S       f""(^)    NM   '  K'"f(P> (A   oc\ 
Ai dCg W — Ylte,(p)— Dl(p)Fln(p)N(p)      f,„(/»q»f,„(rta„   ' \*-°*>) 

*lde8 +      Flm(p)N(p) Fim(p)N(p) 

107 



where 

N (p) = D2 (p) F2n (p) + K2 ^ F2m (p). 

We first construct the D-decomposition curve for Kldcg assuming uncoupled 
variables.    Thus, 

^"-D'g,wW-    *=*■ (4-86) 

We have previously assumed that the stabilized section is structurally 
representable as one or two aperiodic elements in series.    We thus choose 
the following transfer function for the stabilizer: 

F\n(p) _     *iP (A   o'7\ 

The plant transfer functions for the first and second controlled variables 
are chosen from 

D2 (p) = aJ/,3 + ^pi + a»p + W •     > 

and 

We adopt the following (arbitrary) numerical values of the coefficients: 

T! = 0.3sec, T2 = 0.2 sec, 
a„ = 0.001,   a; = 0.1,   a^=\,   a'3=\, 

a* = 0.0001,   a" = 0.001,   a2' = 0.1,   aj = 0.1, 
^2deg==5,   a21 = 0.5,   YuAp) = Y2scl(p). 

Figure 4.3 (curve a) is the D-decomposition curve in the Kncg plane 
plotted from equation (4.8 6).    As is shown in § 3. 7, the system dynamics 
in this case can be obtained directly from the D-decomposition curve. 

We now plot the D-decomposition curve and the auxiliary curve making 
use of (4.85).    The equation of the D-decomposition curve in this case is 

f>       _Di(P)Fin (P) ID, (P) F,„ (p) + K, „es,F2m (p)} ,.   „.. 
A,dc« _       Flm{p)[D2(P)Fm(p) + K2inFm(p)] (P = J<*)- (4-89) 

The equation of the auxiliary curve is 

it F2m (/?) 

Curve b in Figure 4.3 is the D-decomposition curve constructed from 
(4.89).    The auxiliary curve in our particular case has virtually no effect 

on the system dynamics.    Indeed,  since jrjj^pj is close to unity in the 

entire relevant frequency range,  the numerator of (4.90) is close to K,„ 
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The D -decomposition curve thus provides information not only on system 
stability but also on the fundamental dynamic characteristics. 

FIGURE 4.3.   D-decomposition curve. 

The D-decomposition curves suggest the following conclusions. 
1. The region of stability of an isolated system is less than that of 

a coupled system (the intersection points of curves a and b in Figure 4.3 
are not shown). 

2. The positive-response bandwidth for the given Ki value in a coupled 
system is substantially greater than that of an isolated system, whence it 
follows that the dynamic properties of a coupled system, are substantially 
better than those of an isolated system. 

3. It is clear from the preceding that in the case at hand the system 
should not be made noninteracting. This conclusion, however, is by no 
means applicable to other numerical values of the parameters. 

The D-decomposition curves are tabulated numerically in Tables 4.1 
and 4.2' for the two cases being considered.    We see that K2äcg must not be 
ignored.    In constructing the D-decomposition curve for KUl!i, we put 
^2deg 

= 5.     A change in this parameter substantially modifies the trend of 
the curve (see Tables 4.1 and 4.2).    The D-decomposition curves should 
therefore be constructed for all Kiici, the appropriate value of /C,degbeing 
picked out in accordance with the problem at hand. 

The choice of the parameters may also substantially influence the 
auxiliary curve, as is clearly evident from Table 4.3.    We see that in 
our case the auxiliary curve can be reduced to a single point, K\ deg •    The 
tabulated data also show to what extent the auxiliary curve can be mani- 
pulated by an appropriate choice of system parameters. 

Case 2.    rlk=fcO, a;j. = 0. 
First let us write the transfer function.    In equation (4.70) we collect 

the terms which contain the factors   Y\Ki,   K2icf,  Y3K!.    Moreover,  seeing 
that ajfc= 0, we put A"n, An,  and Äü for the respective cofactors and write 
A3 for the system determinant. 

109 



TABLE 4.1 

Kl deg — 
Di(P)Fm(p) 

F,m (P) 

O.Olp+1 <2)X0.1p (3)+l «)XJ D,(P) 
(5>+l 0.3*> 0.3/J + l 'i»«" (6)X(9) 

-*deg 
"dog 

0 

1 

2 

3 

4 

5 

7 

9 

10 

12 

15 

20 

1^°° 0 

l«"° O.l*/91" 

u'1-5* 0.2^91.5° 

lc'2* 0.3c'92" 

u/2.5° 0.4c'92-50 

1«>3° OJ^
93
' 

1«>4° 0.7«'94" 

le>s° 0.9c>95° 

1.01«/55" l.Ole'95-5" 

1.015«'65" 122e/96.5» 

1.02e/8° 1.53c/980 

1.03*/"° 2.06c'I01° 

lc'0' 

1.01c/6° 

1. Me'"' 

Me'"' 

ffle'71' 

leJV.S' 

19c/36* 

39**' 

,49c/54" 

Je'63' 

2.1c'735" 

0 

l.Ole'96" 

2.04c/101° 

3.12«>107° 

4.28c>112° 

5.5c"17-5' 

8.33c'126" 

11.6c'134" 

i3.5c/138° 

17.85c>144° 

25.5c/153° 

42c/163.5- 

u">' 0 

lane'v oV90" 
1.81c'71° o^/90" 
3c'88" 0.9*/90" 

4(,/98- l^90* 

5.15*'108" lV0* 
7.7c>120° 2.1c/90" 

10.9c>130' 2.7c/90' 

12.7«"350 3el*>° 

17c'142° 3.6c/9°° 

24.6c>152" 4.5c/90" 

41c/163' 6c/90' 

lc/0" 

1.05c/17' 

1.175e/31° 

1.35^42° 

1.57c/50" 

1.81c/56" 

2.35c/64" 

2.9c/69" 

3.17«/72' 

3.75c/74° 

4.6c/78° 

6.1c/81" 

0 

0.286c/73' 

0.51c/39° 

0.667«/48' 

0.763«/"°° 

0.83c/34' 

0.893c/26' 

0.93c/21" 

0.95c/18" 

0.96«/16" 

0.98c/12° 

0.983«/9" 

0 

0385c/122' 

0.922e>130' 

2^/136» 

3.05«/138' 

4.28«/142° 

6.87«/146° 

10.1c/151' 

12.06c/'53' 

16.3«/,58° 

24.1«/164* 

40.2«/172" 

0 

0.385c--'58' 

0.922«-/50' 

2e--'44' 

3.05«-/42° 

4.28«-■'38° 

6.87«-Z34' 

10.1«-/29" 

12.06«-/27" 

5.3c--'220 

.lc~/16° 

>.2«-/8° 

16. 

TABLE 4.2 

P>n(P) 

Kl deg = — 
D' iP)   A'miP)  [D' {P) F'n (P) + Kl dC8 F'm (P) ~ F'n (P) F'n iP) a,ia"' 

Di (p) Fm (p) + K2 deg Ftm (P) — Fat (/>) <»2i 

0) DAp) DAP) Kl deg 
0.2 (p) 0.2,7 + 1 (3)X(5) 

D2iP)FM(p) 
5X(6) 0.5x(5) 

-f„2(p)a2, 
Denomi- 

nator 
(10) + (14) 

^Ideg 
(4): (11) 

(7)+ (8) 

0 1,/°° O.Ic/°° 0 0 lc/°° 0 5c/°' 0 0 5,/°° 0 5c/0° 

1 1.3!*/«° 0.135c/49° 0.385c-/580 0.2c/90" 1.03c/»' 0.027c/I39° 5.15,/»° 0.1c/9°° 0.1c-/S°° 5.12c/10° 0.075,-/680 5.15,/»° 

2 1.81*/"° 0.181c/71° 0.922c-/50' 0.4c/80" 1.085c/21-5° 0.0722c/161° 5.425c/21-5° 0.2c/"O° 0.2c-/"°° 5.25,/"°° 0.9c-/40" 5.37c/22° 

3 3c/88" 0.3c/88° 2«-/«" 0.6c/9»" 1.175c/31" 0.18c/"8' 5.875c/31° 0.3c/90° 0.3c -/*>' 5.62c/28° 2.355,-/42° 5.75c/31° 

4 4c/»8° 0.4c/98° 3.05,-/42° 0.8c/9"0 1.29,/41° 0.32c/188° 6.4SeJ«° 0.4c/9°° 0.4C-/"0" 5.9c/4°° 3.518,-/42" 6.2c/430 

5 5.15,/1°8° 0.515c/108° 4.28c-/380 lc/90° 1.42c/45" 0,515c/1"8° 7.1c/«" 0.5c/90" 0.5c-/90" 6.4c/43" 5.67c-/4'" 6.7,/46" 

7 7.7,/l20° 0.77,/120° 6.87c-/34" 1.4c/90° 1.73c/55" 1.08c/2'0" 8.65e/55° 0.7c/9°° 0.7c-/90" 7.1,/55' 7.97c-/"9" 7.6S,/58" 

9 10.9c/130" i.oaeiw 10.1c-/29° 1.8c/9»" 2.07c/800 1.96c/220" 10.35c/60' 0.9c/90" 0.9c-/90" 7.7S,/62' I0.3c-/4>° 8.53e/65° 

10 12.7,/13S° 1.27,/135° 12.06c-/2'° 2c/M° 2.23c/63" 2.54c/225' 11.15c/63' lc/90" 1,-/90» 7.75,/«° 12.56c-/4!" 8.7,/87° 

12 17,/142° 1.7,/142° 16.3c-/22" 2.4c/9"" 2.62c/67" 4.08,/232° 13.1c/6'° 1.2c/90" 1.2C-/30" 8.2c/'0' 17.99c-/42* 9.25,/73° 

15 24.^152° 2.46c/152° 24.1c"/16' 3c/9°° 3.17,/72' 7.37,/242° lS.BSc/"' 1.5c/90' 1.5,-/90° 7.3,/"" 3.3c-/«" 8.7,/8°° 

20 4Ic/l63° 4.1«/>«* 40.2c-/8" 4,/90° 4.1c/'6" 16.4c/253" 20.5c/78° 2c/9°" 2c-/90° 2.4c/86° 83.S,-/44" 4.4C/88" 
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TABLE 4.3 

(I) («) 

A:, 
A*, deg        Flm(p) Fin (P)<hi 

des     D1(p)Fnl(p) + Kv,Ftm(p) 

a (I) F,mM Fm<»1 FlmW> 
-Fln (p)asl 

-II 
(5)X(6) 

Numerator 
(I)-CO m+m 

Denomi- 
nator 

(8) 
(9) 

(10)-0.2 

"°>-*Ideg 

0 5.0 U^ 1«>°° ui°° 0 0 5«>°° 5«;°° 1«/°° 5.2«'°° 

1 5.0 1.03«"1" 1.05«"7° 0.98e-'6° o.u-i*>° 0.098«"-'96° 5.1«"°° 5.12«"°° le>°° 5.2«'°° 

2 5.0 1.085e>21-5° U75e>31° 0.922«--'9-60 0.2e-l*r 0.184«""00" 5.32«"9° 5.25«'2"0 1.01«"° 5.202«''° 

3 5.0 1.175e>31° 1.35e>42° 0.872e-"'° O.Ze-i*>° 0.261«-"°°° 5.6ei*>° 5.62«'28° 1«»° 5.2«"° 

4 5.0 1.29«"'° \.Slel*>° 0.822e--"° 0.4«-'900 0.329«- lm° 5.9«'4'° 5.9e"°° 1«»° 5.2«"° 

5 5.0 U2e>*° \&\eix° 0.785e--"10 05e-i*>° 0.392«-"°'° 6.4«"7° 6.4«'«° 1«"° 5.2«"' 

7 5.0 USe'55' 2.35«'640 0.736<?--'9° 0.7e-JW 0.514«--f99" 7.2«'"560 7.1«'65" 1.01«-"° 5.202«"° 

9 5.0 2.07«'60" 2.9«>ra° 0.715e--"° Q3e-W° 0.642«-'99" 7.85«-'64° 7.75«'62° 1.01«>2° 5.202«"° 

10 5.0 2.23e'63° 3.ne'n° 0.703e--"° U-'W 0.703«- '"" S«'65" 7.75e^64° 1.03«"° 5.206«"° 

The determinant is given by 

Aa = 
*i +KiäegFu 

Ki deg '?2mr2l 

A3 deg ^sm^Sl 

Ai deg'lmrl2 Ai deg/?lmrl3 

*2 ~T A2 deg^sm    A^ deg^2mr23 

A*3 deg Flmrs% h + A"3 deg f*Sm 

to find A"* we first write the transpose 

whence 

!*I + A| deg/'lm     A% degp2mr2\ A% deg/'am^l 

A" I deg'7lm''l2 *2+^2 deg/^m    As deg^3mrS2 

AI deg ^"l mrl 3 Ä's deg p2mr2S &3 -f~ A3 deg ^3m 

.»    I  *2 + ^2 deg^2OT    KiicgF»mrlt 

I  A2 deg^2m''23 *3 + A3 deg^ra 

."    I Aldeg^lmr12    ^3 deg'?3m'*32        I 

1 Al degFimrti    b3 -j-^deg^m 

.*    I  Aideg^lmr[3     *2 -HÄ^deg^ni 
/l13      «T. j.^F.-r..     *".  .     P..,.. 

*Mdeg' lm'[3    "2 ~r f^deg^s 

I Al deg^lm^lS    A2 deg ^m^s 

Equation (4.70) reduces to 

^1 = -7S- U-Allfl deg^lm — -^12^2 deg^m^l + ^13% deg^m^l]  Kl ,ef + 
"3 

+ l^llATldeg F\mr\l A\iKi deg /^m + -^13% deg/?3rar32]K2,ef + 

+ [•AllA'l deg^lmr« — A\iKi deg^W-» + AaKz deg^m] ^3^ + 

+ AnFu/i-A'aF2„/2 + A'i3F3„f3}. 

(4.91) 

(4.92) 

(4.93) 

(4.93') 

(4.93") 

(4.94) 
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The transfer function (ignoring the load) is written as 

YAP)   = A"n'<l^Flm(p)-ÄnK2äe%F2m(p)rn + Ä[3K3i^F3m(p)r31 

,   4X deB
F\m (P) ra — An«2 ^F2m (p) + A"aK3,jeE F3m (p) r32     Y2tct(p) 

A3 ' YuAP) 

,     4X deg f im (P) 'l» - AaK-2 deg ^m W ^23 + 4X deg FSm (P)        Y% ref (f) (4   95) 

A3 ^lrcf(P) 

Transposing the determinant (4.91) and expanding the transpose in 
elements of the first row, we find 

As = (bi + K\ dcg F\m) K\ — Ki tegF2mriiAn + K3 deg F3mr3lA"13. (4.96) 

The elements of the first columns in An and Ä[3 are multiplied by Kun. 
Taking this factor outside the determinant, we write 

An = KnnAli,   tis = K\*clAa. (4.97) 

Making use of (4.96) and (4.97), we write the transfer function (4.95) 
in the form 

Yl (P)    = ^1 deg Kl W Flm (P) - «2 deg F2m (P) r21^12 (P)+><3 deg^Sm (P) ^31^13 (P)]  . 
Yx.rf(P)       b,A"n (p) + Ks deg [Flm (p) »;', </>) -tf2 „^ (/>)r2lAa(/>) + -* "'" 

->+^3deg/r3n(/')'"31-413(/')] 

■     K„ef(p) #1 deg Kl (l) F\m (P) r12~^2 deg^2,„ (/>) ^12 (P)+^3 degf3m (l) ^IS ÜO]   . 
r"«<-P)   X Mil </>) + *1 deg [^ 0>> 4'l </>) - *2deg F2n, </>> r2l

An (P) + -* 

->-+^3deg^3»,(/,)'•31•413(/,)] 

+ JWf|_x   *i deg Kl (P) Fim (P) rg—Kj deg
F

2m (p) r23A12(p) + A13 (p)K3 jegf3m (/>)]       . . 
Yuc(p) blAli(p) + KiiH[Flm(p)A';i(p)-K2deeF2m(p)r21Al2(p) + ^ ' 

-> + *3 deg-^m (P) 'MAS (/>)] 

Dividing the numerator and the denominator of (4.98) by 

P\m (P) An (P) — K.2 degAm (p) rjl-Aia (p) + Ki deg ^301 (P) r3\Ai3(p) 

and putting p=ja, we find 
P p 

YAM     __ «,deg ^deg-07 yir|;f(y(0) *. deg -tf y^^j^ 

^l,ef(» Kldeg + Dtf,W    "^ *1 deg + Dtf, (M    K, ref (»   "^ AT, deg + O^ (»     KlKf U<0)  '   ^ ' 88' 

where 
A = ^11 (/<") Fim {M rX2 — K2 deg ^2™ (/<■>) An (ja) + 

+ fo deg F3m (Jco) A,3 (ja) r32, 
Qi = Flm (ja) A"n (ja) — K2 deg ^m (y'to) r2iAi2 (ja) ■+ 

+ Ks deg F3m (yo)) ri3^4i3 (yco). 
Pi = A"n (ja) Flm (ja) n3 — /C2 deg F2m (ja) mAn (ja) -\- 

+ Ks deg F3m (ja) AK (ja), 

Q2 = Fim (M An (» — K2 deg Fim (ja) r2\An (y'co) + 
+ K3 deg^an (» Z-13^13 (y«>). 
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Here DK[ (Ja) is the equation of the D -decomposition curve for Kues with 
its sign reversed,  defined by the equation 

Ku 
M;<»Mn<» 

Flm W ^11 U®) — K2 deg F2m (.M 1-21^2 V®) + 
(4.100) 

+ *3 deg^ta IM r3\A13 IJQ) 

The first term in the right-hand side of (4.99) determines the dynamic 
properties of an isolated servosystem.    These properties can be found 
from the D-decomposition curve (4.100).    Subsequent terms specify the 
influence of other servosystems on the one being considered.    Since the 
system is linear,  the effect of extraneous servosystems can be found by 
superposition.    All terms in the right-hand side of (4.99) have a common 
denominator,  and the D-decomposition curve DKt (ja>) is thus applicable 
to all the components.    It therefore suffices to perform geometrical 
addition of the auxiliary curves only. 

In the general case of an ra-dimensional servosystem,  the dynamics of 
the i-th servo is found from the general equation 

Y,(J<s>) V deg 

Yi,c,(M Kideg+^V» I + 2UA*(»'<*] (4.101) 

The functions l[Aih(j<a)rib] are obtained as previously for a three- 
dimensional servo.    The expression in brackets in (4.101) is the auxiliary 
curve for the general case of an n-dimensional servosystem.    Having 
constructed the D-decomposition curve for K, ieg and the auxiliary curve, 
we can choose the appropriate gain Kldc$ which ensures system stability 
and desired quality. 

Some general conclusions concerning the dynamics of this class of 
structures can be drawn from (4.99) and (4.101). 

1.    The auxiliary curve,  representing the contribution from extraneous 
servosystems, may raise the crossover frequency of a closed-loop i-th 
servo at constant gain.    This is obvious from Figure 4.4, where ü>I0 is the 
crossover frequency of gain in an uncoupled system, co2o the crossover 
frequency for the same gain ftTideg in a system with the auxiliary curve 
shown in the figure.    Hence follows a very important conclusion: the 
dynamic properties of each /-th servo in a multidimensional servosystem 
can be better than those of an isolated f'-th servo. 

Im* 

ideg 

FIGURE 4.4.    Estimating the crossover frequency. 
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2.    The dynamic properties of each component servo can be adjusted 
by an appropriate choice of variation of the reference values Yktel.    We 
see from (4.101) that the auxiliary curve of the i-th servo is substantially 
dependent on the variation of YkKtof all the other servos.    This in a sense 
provides a sort of control coupling, and in certain cases a sequence of 
YkKf values can be programmed in advance to ensure the desired quality 
characteristics of the i-th controlled variable. 

As an example, we calculate a two-dimensional servosystem, which 
illustrates the procedure and also validates the above conclusions. 

From (4.99) we have for the transfer function of a two-dimensional system 

MP) 
ri,ef(/>)      *i deg + DKi (p) 

„. A'nFin, (P) rn - *2 le^im (P) A"n (p) 
*M deg  T, ° T.  

Flm (P) An (P) ~ Kj deg I*2m (P) r21A12 (p) 

«1 deg + OK, (P) 
Yitct(P) 

Here 
A 

A\2 = Ki deg Fim^n, 

Di(P)r,n{p)[bAp) + Klic% Flm (p)] 
DK, (p) = 

f\m(P)[b>(P) + K2itiF,m(p)]—K,degf.»(P)r2lFlm(p)r„ • 

p=Je> 
*i = &oP3 + alp

i + a2p -)- 03, 
*2 = KP* + KP7 + atP + «3. 
<x0 = 0.001,   a, = 0.1,   Oj=l,   03 = 1, 
«; = 0.0001,   a; = 0.001,   ^ = 0.1,   ^ = 0.1, 
rj2 = r2j = 0.2, 
a12==a21 = 0.5. 

Figure 4.5 plots (a) the D-decomposition curve for r,2=r2,=0.2, (b) the 
O-decomposition curve for /•12=r2I=0.5. Figure 4.6 shows separately the 
auxiliary curves for r,2=0.2 and r,2=0.5. 

FIGURE 4.5.   O-decomposition curve. 
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The various curves indicate that as the degree of coupling increases, 
the ^-decomposition curve becomes more favorable: the range of /Cideg 

values corresponding to a stable system increases, and the crossover 
frequency for the same /C]deg is higher.    Furthermore, in a coupled system, 
the auxiliary curve can be modified by appropriately changing y,-,Cf. 

Irn/fj deg 

FIGURE 4.6.   Auxiliary curves: 

(a)r„=0.2, (b) r„ = 0.5. 

Case   3.    The general case rih =£0 and a« =£0. 
System calculations and choice of parameters in accordance with 

quality specifications can be divided into two separate stages,  putting 
first rik-£0, aih=0 and then  rih=0,   ««=£0, and adding the results.    The 
parameters are chosen so as to ensure the desired system dynamics 
with a view to the task at hand (designing a servosystem,  stabilizing, etc.). 

(b) INTEGRAL SYSTEMS 

We shall establish how the expression for the /-th controlled variable 
changes when integrating control is introduced in each loop and derive 
working formulas for system analysis and choice of fundamental parameters. 

We have previously obtained an expression for the /-th controlled 
variable in an integral multivariable system.    This expression is 

Y,(P) = T (-1 )p+' A,j (/>)  KpmFmp (/>) 2rp*K*«,(/>) + 

+ {e*W+KJ<«g,lP))f,U>)]y (4.50) 
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As in the case of proportional systems, we assume that the configuration 
remains structurally stable as the gain increases indefinitely.    In other 
words,  condition (4.2) is again satisfied.    Stabilization is provided by 
passive elements meeting condition (4.55). 

We now derive an equation for the /-th controlled variable assuming 
sufficiently large gain for the stabilized section.    Dividing (4.42) by K, „ 

and putting 
Ki st 

- = m/we obtain (making use of nomenclature (4.41)) 

mfl, (p) Y, (p) + b, (p) Y, (p) + Ki dcg Fmi (p) Yt (p) + 

+ KiäciFmi(p) yirikYk(p) + micl(p) 2Ja„K»(/>) + 
b S=l 4 = 1 

+ K,g, (P) 2 aikYk (p) = K, deg Fmi (p) YIK, (p) + 
ft = 1 

+ K, dcg Fmi (p) S rlkYk ,., (p) + miCi (p) f, (p) + Kigl (p) /, (/>) 

(' = 

* = i 

= 1, 2, .. IS     Kliox (4.102) 

Let the auxiliary equation (which may be of first,  second,  or third kind 
in this case) satisfy the stability conditions.    It thus suffices to ensure 
stability of the degenerate equation and to choose its parameters in 
compliance with system quality specifications.    The point is,  that in a 
stable system with sufficiently large Kin , the quality of the entire system 
is completely determined by the degenerate equation. 

The set of degenerate equations is derived from (4.102) by putting  mf= 0. 
We have 

\b, (P) + K, de8 Fml (p)} Y,U>) + K dcg Fml (p) 2 rlkY„ (p) + 

+ Kigl (p) Jl alkYk (p) = Kt deg Fml (p) Y, Kf (p) + 

+ Ki dcg Fim (p) S rit (p) Yb re, (p) + K,g, (p) fi (p) 
k = 1 

(t=l, 2, .... n). 

In matrix form equations (4.103) are written as follows: 

AY = KäcgFmYKf + BYKl + NF, 

whence 

where 

Y = A-i\K^FmYai+BYK! + NF\, 

*i (/>) + K,deg P,m(p) ni + •■■ K, degFm, (p)/-,„ -f 
+ K,äcgFm,(p) +K\gi(P)au + Xlgl(p)aln 

KläegFlm(P)l'a\+      M/0 + Ki dcg Fml (P) I'm + 
+ Kigi (p) 021 -f Ki deg Fml (P) + Kigl (P) «in 

Kn deg Fnm (P) rn\ + 
+ Kng„(p)an, + Ki deg Pmn (p) 

(4.103) 

(4.104) 

(4.105) 

(4.106) 



AdCR' m = 

f i dcg^ml (P) 0 

rKf« 

KlrefW 

J's r<ifO>) 

ß = fj deg ^m2 (P) r21 

»WrO») 

Kl deg '"ml (?) rl2 • • •  Ki dcg ''ml (/>) nn 
0 ...  KiäcgFm2{p)r,„ 

... ... 0 

N = 
and 

0 KigiiP) ■■■ 0 

Kngn(P) 

/=• = 
hip) 

IniP) 

(4.107) 

(4.108) 

(4.109) 

(4.110) 

(4.111) 

The inverse /l"1 is obtained by the previously outlined method from the 
transpose At.    Inserting for the matrices in (4.105) their expressions 
(4.106)—(4.111) and multiplying, we find 

2 (-l)I+> AtJ   KjFmJ 2 rjtYM + Ktf,!, 
;=1 \ *=1 

2 (-1)" +J An! [ K)Fm! 2 rJkytK, + Kngnin 

(4.112) 

where all rit= 1. 
Hence for the /-th controlled variable 

Yi=T 2 <-')'+' ^ ^-' 2 r'*K«* *+w* (4.113) 

The structure of (4.113) is identical to that of the equation of the /-th 
controlled variable in a proportional system.    The only difference is in the 
explicit expressions of the operators in (4.69) and (4.113).    It is thus 
unnecessary to repeat the previous manipulations described in detail for 
proportional control systems.    Integral systems can now be investigated 
and calculated using equation (4.80) with appropriate expressions inserted 
for the operators from (4.113). 

As an example, we proceed with a calculation of a two-variable integral 
control system.    Here aik =£0,   rih=0; we thus start with working formula (4.8 3). 
Here 

PlmlP) 42</>)r2rcf(/>) 
K\ dec — 

*M deg  — 

M deg 

Je8   plm (P) »a (p) >y.f (p) 
h (P) A\\ (P) - F2„ (p) A'n (p) a2.' 

FlmiP)K>iP) 

(4.83) 
+ 
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Remembering that we are dealing with an integral system, we will 
determine the expressions for all the operators entering (4.83).    For 
simplicity a lagless system is assumed,  and making use of nomenclature 
(4.41) we obtain in the integrating case 

*I=*I(/»)/>OI (/>)*%! trt. 
An = bi (p) + Ki dcg Fim (p) = Ra (p) pD2 (p) F„2 (p) + Ki ^ F2m (p), 

Substituting in (4.83), we find 

A-      —JdEtzJÜEl 

where 

£0») = *!*,. 
Mf^-finW fan(/>)Oil    >W(p) 

KV)   '^W   Ri(P)D1{j>)pFnl(p) + KiiciFlm(p),YlKi(p)' 

a><D) = K | *i (P) PD\ (P) Fni (P) - Fan W ».. vw    A i deg 1- Pim(j>) [Ri (p) Di (p) FM (p) p+Ka ^Fam (p). 

The equation of the D-decomposition curve for tfi0og is 

P       = *■ (M Dj <M Fnl (M ./" - F*n (M «» 
1 dcg Flm (7<D) [R, (» D, (/o>) Fn, (» j* + K, „eg Ftm (Ja) ' 

For the sake of simplicity we put 

■'?;m=l-|-T://', 
Fln = 1,P- 

The calculations are then continued as for a proportional control system. 

§4.3.    STRUCTURES WITH SEVERAL STABILIZERS 

Stabilizers using passive elements have the obvious advantage that 
technically their design and construction involve neither fundamental 
nor practical difficulties.    On the other hand,  it is clear from the preceding 
and from the very nature of the passive elements that 

n-i — /Ttj^O, 

so that the self-operator of the stabilized section of the loop cannot be of 
degree higher than two. 

It is shown in /39/ that in single-variable control systems a single 
stabilizer, though possibly ensuring infinite-gain stability,  is insufficient 
for high-quality operation.    This is so because the degenerate equation is 
of a high degree and the dynamic properties of the system are inadequate. 
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Systems of rational structure considered in /39/ possess infinite-gain 
stability and an unlimited closed-loop positive-response bandwidth.    In 
cases when the initial single-loop system is described by an equation of 
higher than fourth degree,  the desired structure is generated by intro- 
ducing several stabilizers using passive elements. 

In this section we generalize the preceding results to the case of v 
stabilizers in the system.    Owing to the inclusion of numerous stabilizers, 
the system now constitutes a multiloop structure in each controlled variable. 

<   I 
y 

r < i 

*rlMXK 

> -s > *r 
£«i*h 

FIGURE 4.7.   A multiloop subsystem. 

Figure 4.7 is a block diagram of the layout for the i-th controlled 
variable.    In the derivation of the general equation we allow for coupling 
through the plant and the measuring devices.    By putting subsequently 
rik= 0, we will obtain the equation of an ordinary plant-coupled multi- 
variable system. 

We assume that the v elements whose gain can be made sufficiently 
large are stabilized; part of the measurement device, part of the controller, 
and the plant are not stabilized.    The set of equations describing the 
behavior of the i-th controlled variable in this system is the following. 

The plant equation: 

Di(p)Yc = Kl (4.114) 

The equation of the unstabilized part of the controller: 

RtU>)y'i = ^X„. (4.H5) 

The equations of the v stabilized elements in No. 1 configuration /39/; 

Ä [NieFpml + ATip/^pI Xv = ft KttFmttXn. (4.116) 
P=I P=I 

The equation of the unstabilized part of the measurement device; 

Ql(p)Xu = tl Yt„ ■n + So.m«,-^) (4.117) 
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Eliminating Y',, X,v,  and Xn between (4.114),  (4.115),  (4.116),  and (4.117), 
we obtain after simple manipulations 

V 

R, (P) D, (p) Q, (p) II \N,„ (p) Fm!p (p) + KlpF„lp (P)] + 
P=I 

+K,tifi, n KltFn,i ip) y,+/?,. (p) Q, (p) n [/v,p (/>) Fmlp (p)+ 
p=i ; p=i 

+ KifFmvip)] 2 a/ftKft + n,6, n Ar,p^m/p 2 r„Kt = 
*=i P=I *=i 

= AT/F*iö4 IT KifFmif, (p) Y, rcf+ 
p=i 

P=I s=i 

V 

+ /?;(P)Q((P)II[W,p(/')/:'m(p(jp) + ^pF„;p(/))J/i. (4.118) 
P=I 

Putting (=1,2,...,  we obtain the complete set of equations describing 
this multivariable control system. 

An ordinary plant-coupled multivariable system is obtained by putting 
rik=0 in (4.118).    Thus 

{/?,(/>)D, (p) Q, (/>) Ä [AT*(P)Fml(>(p) + Kifnte(/>)] 
l P=I 

p=i        ) p= 

+ /?i(P)Q,(P)i\ \N*(p)Fmls>(p) + KieFni»(/>)] 2 aikY„ = 
p=i *=i 

V 

= KMfi,IlKicFlm[,Yl,ef+ 
P=I 

+ Ri (P) Qt (P) ft [A^<p (p) Flmp (p) + Ki^.i, (p)] h- (4.119) 

The following notation will be needed if we are to write (4.118) in matrix 
form: 

Rt U>) OI 0») Qi (P) ft Iffi, (P) Fmip (p) + Kirnte (p)} = a, (/>), 
p=i 

v 
au = a, (p) + K, ,„, II Fm,9 (/>), 

P=I 
V 

TLFms,i(p)=ti(p), 
P=I 

V 

KiVfiiÜKi^Kito,, 
P=I 

V 

RiWQi (P) II I^/P (p) Fmlfi (p) + KlfFnif, (p)\ = bt (p). 

Equations (4.118) are thus rewritten as 
v -I n 

a,{p) + Klm,JlFmte(p)  Yi + bt (p) 2 atkyt = 
P=I J *=i 

V 

= Klm]lFm,p(p)y!al+bi(p)fl       « = 1,2 «). (4.120) 
P=I 
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The matrix form of (4.119) is thus 

whence 

where 

AY = KJrn*+BF, 

y = A-'[Kmt,yK, + BF], 

(4.121) 

(4.122) 

i4 = 

<*n Mi»  ... Mm 
p2a2i       fl22      ...   62d2n 

M/i a/y My* 

'Ctott/ref — 

AntotCn'nrcf 

BF-- 

*lfl 

The inverse /H is calculated as before. 
Since equation (4.122) has the same form as equation (4.121), we can 

directly write the equation for the /-th controlled variable: 

YI (p)=J 11 (-^+p ^ k « n ^P* </>) I', „,+6P (/>) fP 
lp=l L *=I 

Assuming that all  Kpn.,f(with the exception of p=/) are known numerical 
values and that K/rcfis the input, we obtain the following expression for the 
transfer function for the /-th controlled variable (taking / = 0): 

° r      v 

p=l L *■=! 

i    " v 1 

J   p=l *=1 I p=- 
(4.123) 

This generalization can be interpreted as follows.    Since the stabilizers 
use passive elements where the degree of p in the numerator (nt) is invariably 
less than or equal to the degree of p in the denominator (m,), i.e., n,<mil 

the stabilized section in a system with a single stabilizer can be described 
by a differential equation of not higher than second degree.    Our generaliza- 
tion lifts this essential restriction.    It is proved that the stabilized section 
can be described by a differential equation of any degree, provided that 
not one but n stabilizers are introduced.    The number of stabilizers n 
depends on the degree of the equation describing the stabilized section. 
If the degree of this equation is v,  the minimum number of passive-element 

stabilizers for this loop is n — ^. 
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Chapter Five 

COMBINED MULTIVARIABLE CONTROL SYSTEMS 

§5.1.    INTRODUCTORY REMARKS 

Combined multivariable control systems are automatic control systems 
with plant and load coupling between the various controlled variables. 
All   loads act as disturbances on all   controlled variables. 

The present analysis of combined control systems is based on two 
principles, the Watt —Polzunov principle (or the principle of control by 
deviation) and the principle of load control. 

A simple problem to be considered at the outset is the choice of rational 
structure.    In ordinary plant-coupled multivariable systems the choice 
of structure reduces to the determination of stabilizer properties and 
points of stabilizer connection to the network that meet certain quality 
and functional specifications.    In combined control systems one is 
additionally concerned with the transducer through which disturbances 
are introduced into the control loop and with the connection of its output 
to the system. 

Aside from the requirements for ordinary multivariable control systems, 
we should consider certain invariance aspects of the structural properties 
of these systems.    Invariance is dealt with in a special chapter. 

§5.2.    TRANSFER FUNCTIONS 

Figure 5.1 is a block diagram of a combined control system.   No 

restrictions are imposed on the elements.    The stabilizer f2'(p) is chosen 

so that/Cc, may increase indefinitely.    In general,  it follows from the 

results of Chapter Four that if -^^ is such that the stabilizer should have 

nOmu Ri(p) can be structurally partitioned and several stabilizers 
introduced; this approach will not affect the fundamental results.    For 

this reason the transfer functions -^y and /^ {p) are structurally of 

very general character. 
So as not to restrict the generality of our analysis, a section of the 

loop with a transfer function  -^-. is left unstabilized.    No restriction is 

imposed on this transfer function at the present stage, but later on it will 
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turn out that the parameters of the unstabilized element should be chosen 
so that the degenerate equation remain stable as KCi-+°°- The sum of all 
load disturbances applied to the plant constitutes the input of this element. 

The transfer function 6" fl  is unknown at this stage,  and it is therefore 

immaterial at what particular point of the main control loop the output of 

the transducer   „" ,„, is delivered. 

BniW 

w» 
< —*- 

Y ,i 

<"2 

9i(p) 
Her- 

n » f\ F > HS 7\* > 

< 

^^_^ *       ^r        ,*4 *U 
' 1 

I • 

i 
Fni tp) 
rmi(p) 

FIGURE 5.1.   A combined control system. 

Our problem is the following:  given a certain quality criterion 
or a certain desirable property of the combined control  system, 

choose the transfer function  -fl"' yl   in compliance with the properties 

of the  section between the transducer output and the plant input, 
where the load disturbances are applied.    Once the  sought property 
of the transducer has been determined and its transfer function established, 
the connection of the output can be found unambiguously. 

The transfer function for the i-th controlled variable, according to 
Figure 5.1,  is 

QiO»)*,=iii \y,«i-yi 
Onl(P) 
Kiip) Sß«o>)fi 

Q, 0») K, (P) x,=n, [(Kref, - r,) e«, (/>)+e„, (P) t P« (/>) h]. 

Rt(j,)Y't = Kci[xi-^iy] (5.1) 

i.e., 
[Ri (p) Fmi (P) + Kc iFnt (p)] r't = Kc ,Fml (p) Xi, 

D,(p)Y, = Ki r,'-2 «i*ü»)rH-2 fc* (/»)/* 
fc=l ff = 1 

(5.2) 

(5.3) 

123 



Eliminating Xu Y\ between (5.1),  (5.2), and (5.3),  we find 

Q, (P) e„, (p) [/?, (p) Fm (p) + Kc f., (p)] Y\ = ft/fc ,Fml (p) [(Ktef, - Yd 0«, (p) + e„( (p) S ßiS (p) /,], 

and 

n n 

Y\ = £ML yi + % a.k (p) Yh - £ p„ (p) ^ 

Q/ (/») 8«i (P) IRl (P) Fml (P) + Kz tFnl (p)\ 
D,(p) 'j^-yl+^lAp)yll-tihAP)f 

*=1 *=1 *=1 

n 

y«s. fimi (P) - YKl (p)+6«! (p) ]£ h> (P) h V,KclFml(p) 

[Q,(p)K,(p)Ri(p)Fml(p)Dl(p) + 
+ KclDt (p) Q, (p) f)ml (p) Fnl (p) + n,Kc lKlFml (p) em, 0»)] Yt + 

+K,Qi (P) e„, o») /?, (P) Fml(P) 2 «„ (p) r, + 
*^' 

+Äi/fef^«i (p) e«i (P) Q, 0») £ «« (P) r* = 
S = l 

= K^KC ,Fmi (p) 9«! (p) Kref + Fmi (p) KptKt fini (p) 2 fc, (/») f* H 
*=1 

+ K,Q, (p) 9m, (p) /?, (p) f., (p) 2 ßJJt (p) /t + 

+ «"l^e /Q, (P) 8-/ (P) ^.1 (P) 2 ß„ (P) f*. (5.4) 

Taking t= 1, 2. . . , we obtain the complete set of equations for a combined 
control system with interrelated variables. In order to write these equations 
in matrix form, we put 

Qi (P) «i (P) Ri (P) Fml (p) D, (p) = au (p), 
Dt (p) F„, (p) 6rai (p) <?,(/,) + |i fcP* (p) e«f (p) = A,, (p), 
*wQ, (P) e„, (p) /?, (p) Fm; (p) = e„ (p), 
^^(p)Q((p)6m;(p) = ^,(p), [ (5.5) 
KMiFm, (p) 9m, (p) = /„ (p), 

^(P)K,MA((P) = P«(P). 

AT/Q/ (P) 6m, (P) tf i (P) Fm, (p) = JV« (p). 

Making use of (5.5), we write 

[<*«(P) + ATC fiu (p)\ Y, + cu (p) o„ (p) K, (p) + c„ (p) a, j (p) K2(p) + ... 

■■•+c„(P)a,.(p)Y„(p) + rfH(p)Kc,(p) 2 alt (p)K,(p) = 
*■/■' 

=^c ,/„ (P) K,.„, (p)+KC fill (p) 2 P,* (P) /»+w„ (P) 2 fc* (P) f* + 

+ Kcldu(p) 2ß/*(p)f*       (« = 1, 2, ..., ft). (5.6) 

In matrix form equations (5.6) are written as 

A(p)Y(p) = B{p)YaS(p) + D(p)F(p). (5.7) 
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For the sake of simplicity we henceforth omit the argument p,  remem- 
bering that all equations are written in Laplace transforms. 

In (5.7) 
au + /Cci*n {Ci\ + Kci<tu)au   ... (cn+#c ,dn)a,n 

('22 + ^02^22) «21       022 + ^02*22 • • • ('22 + ^c2<*2a) <*2J1 

A(p) = 
(C/< + /Cc tdn) a/i • • • • • • (cu + Kcidu) a; 

(ctinJrKc„dnn)a„i   (cn„ + Kc„d„n)a„3... a„„ + Kc„b„„ 

Yitii 

(5.8) 

ru» = F(p) = 

B = 0 Kci^w 

.. 0 

.. 0 

...  Kcnln 

D = 

lKcAPu + dn)+Nu]Vn [Kcl (p„ + rf„) + JVn]ßls.. .[Kc , (Pi. + dii)+Ar„]ß1B 

[Kc 2 (P22 + <*22) + ^22] P2I [Kc 2 (P22 + ^22) + ^22] P22• • ■ IKC 2 (pS2 + <*22> + JV22] ßän 

[Kcj (PjJ+ljjy+Njj] ßyi [*= , (Py/f rfy;)+^y] P/2 "•[*., (Pyy+ ^)+"yy]'ßy„ 

[* c * (P/w+dmH-W™] ß«l  [/Cc« (Pnn+^H-Af„„] ß„2. .. [Kc » (P«rf+rfOTH-Ar
/1B] ß«, 

Here ß„= 1. 
From (5.7) we obtain an expression for the Laplace-transform matrix 

Y(p) of the controlled variables: 

Y (p) = A~l (p) [B (p) V,t! (p) + D (p) F (p)\. (5.9) 

^(P) = (5.10) 

The matrix (5.9) should be represented in explicit form before explicit 
expressions for each controlled variable can be written.    First we find 
the inverse A~l(p).    The transpose At is given by 

«u+Kci*u (C22+ Kc2<*22)a21 ■■■(Cnn + Kcndm)ani 

(«ll + foidiiJOii fl22 + ^c2*22 ••• (cnn-\-Kcndnn)anl 

(«n+fci''ii)ou ■■■(.<:nn+ Kc„d„n)ani 

(«ll + 'Ccl^ll)"!/! (c22 + Kcld12)a2n ... «„„ + Kcnbnn 

From the transpose we obtain the inverse: 

Au (P) 
- Ati (p) 

(-1)'+' An (p)    (-\)>+2Alt (p) ... (-l)' + "Aln (p) 

(-\)n^An\lp)    {-\)n^An,(p) '..'. (-iy+MM(p) 
where (-l)i+iAji(p) is the cofactor of the element at the intersection of the 
y-th row and the i-th column in At(p),  A is the determinant of the matrix 
A(p) (it is clearly implied that A(p) is a regular matrix).    Multiplying out 
the matrices in brackets in (5.9), we find 

A-\P) = T 

<-l),+!U„Q>)   ... (-l)i+nAtn(p) 
An(p) ... (-lf+"Aln(p) 

(5.11) 

B(p)Y(p) = 
Kc2 

In 
/a2 

J'refl 

Yrcf J 

Kc hi Jrefy 

Kc n Inn •ref n 

(5.12) 
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D(p)F(p) = [5.13) 

[*CI(PI,+<*II)+W„]2&*/* 

[tfc. (Pa+ *,,) + #„] 2 ß.»h 

[KcliPjj + djfi+NjASWt 

lKcn(Pnn + äm) + Nm]^^k 

Inserting for  A~l(p), B(p)Ytet(p),  and D(p)F(p) in equation (5.9) their 
expressions from (5.11), (5.12), and (5.13) and performing matrix multi- 
plication, we obtain after simple manipulations an explicit expression for 
the matrix of controlled variables: 

2(-l),+*Xls/Cct^K*ref 

rip) = r + 
2 (—')      ^2* Kc klkkYk „ 

2 (—')      AjiKcklkkY*, 

2(—')"+ 4A»'it1'i 

2 (-l)1+( Au lKci(Pu+du) + N„) 2 ß/*f* 

2 <-l)'+ Ajt IKo t (Pi, + dlt) + N„] 2 ß<*/* 

2 (-D"+1 Am IK, i (p« + d«) + Nu] 2 ß»f* 

(5.14) 

The expression for any controlled variable is obtained from (5.14) by 
■equating the corresponding elements of the columns in these matrices. 
The expression for any /'-th variable is thus written as 

n 

+sS(-Dy+,^iIf.ito«+rfii) + ^ll|Sßi»f*- (5.15) 

The transfer function is defined as the ratio of the Laplace transform 
of the output to the Laplace transform of the input.    In single-variable 
systems the transfer function is the ratio of the Laplace transform of the 
controlled variable to the Laplace transform of the reference value, the 
load being ignored.    We see from (5.15) that even if the component 
dependent on load (or disturbance) fh (the second term in the right-hand 
side) is neglected, the output K,(p) depends on all  Yite,(p).    The concepts 
of a transfer function and a generalized transfer function will be very 
useful in this case. 
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The transfer function for the /-th controlled variable is defined as 
the ratio of Laplace transforms of the /-th controlled variable to the 
/-th reference value,  disturbances being ignored. 

If fi= 0,  we have from (5.15) 

Yj(P)    _ Ajj(p)Kcjljj(p) 1 ^, . + s 

Y]Ki(p) Ä l" Y~dpJK Li(— l1J+ KaAjJ^Y^^p). (5.16) 
* = i 

Defining the generalized transfer function along the same lines as in 
single-variable control systems, we obtain 

YjM AJJ fa.) Kejl„ (P)        If l+b ,-v)Wrt    , 

+iJ(-')y+'^/(/')K/(pi,(/')+rf«(/»))+^l^)]T-^-2;pl»/4(/»). (5.i7) 

The physical content of these expressions for transfer functions is 
quite obvious.    The first term in either expression is the ordinary 
transfer function of a single-variable system; the second term in (5.16) 
and (5.17) gives £he contribution to transfer function from the coupling 
of the given variable to other variables; finally, the third term in (5.17) 
shows to what extent the transfer function is influenced by self-load and 
by load or disturbance in other controlled variables. 

Combined multivariable control systems considered in this chapter 
are conveniently analyzed with the aid of the generalized transfer function. 
The characteristic equation of the entire multivariable system has the form 

A=0. (5.18) 
In what follows we consider some quality aspects of combined multi- 

variable systems. 

§5.3.    STEADY-STATE OPERATION 

The state of rest is a particular case of steady-state operation.    The 
statics equations for this case can be derived from the theorem of limiting 
values.    A statics equation is obtained from (5.15) by putting p= 0. 

We consider two different cases: 
(a) the case of proportional subsystems,  and 
(b) the case of integral subsystems (both in relation to the self-load). 

(a)     PROPORTIONAL SUBSYSTEMS 

Using the nomenclature of (5.5) and putting p= 0, we write 

««(0) = Q, (0) eni (0) Rt (0) Fml (0) Dt (0) = iem, (0), 
b„ (0) = iitKfiml (0),   eu (0) = Hfl« (0), 
d„(0)=o,     /„=ix,^em;(0), 

& u (0) = e„ (0) HfK,.      Nu (0) = Kfim (0). 
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The steady-state equation for the /-th controlled variable of a 
proportional system has the form 

n 

yj (p)=äW 2 (-v'+k A» <°>*«*'"(0) K«' *(0)+ 
n n 

A(0) 

or, making use of (5.19) 

>0<°)=ifi (-!)y+%* (°) fcii^*e.* (0) n,f (0)+ 

(5.20) 

Here 
6m,(0)+ K,e„,(0)a,2 ... Kfini (0)a,„ 
+/Cc(i+ci/<c^(eMi(0)) 
K,8„2 (0) a21 6ra2(0)+ ... K2e„2 (0) a2„ 

4-^cj(i+i>«f»emj(0)) 

A(0) = 

/c„e„„(0)o„, 

era;(0)+ ... Kfinj {0)aJn 
+Kcl{\+]>.]KcjKfimi(.0)) 

.. em„(0) + 
+Kc.X 
X0+MC«KA.B(0)) 

(5.21) 

From (5.20) we can find the steady-state value of the /-th variable for 
given loads fh,  if all the system parameters are known. 

Before proceeding to determine the properties of an n-variable system 
under static conditions, we shall consider the application of the above 
equations to a three-variable system.    From (5.15) with n= 3 we have 
for,  say, the 1st controlled variable 

3 

3 3 

= -£- (-^ll/^cl'll^rcfl A12Kc2'22' ict2-\~ A^Kcs'sif cef3 T 

— Ai2 [Kci (P22 + ^22) + ^22l Ißsif I + ß22f2 + ßzafs] + 

+ A13 \Kc3 (P33 + <*33) + Mal [ßai/i + ß32f2 + ßaafal 1 • (5.22) 

Here 

(C22 + /Cc2rf22)«2I       «22 + /Cc2*s2 (<^il + Kcl^l}) «23 

(c3, -f /fc 3rf33) a3,   (c33 + Kcjrf33) as2   a33+/Ccs*33 

(5.22') 
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The transpose in this case is 

all+Kcl>ll («22 + Kcl<<ja) «21      («33 + ^3^33) «31 
<cll +Kctdll)all      «22+^02*22 («33 + Kc3d33) «3: 
(C,| -f-Arcirfll)Ct,3     (C22 -f Kcidn) ai3      «33+^3*33 

whence 

>»11 = 
"22 + ^02*22 (C33 +/Cc3<^33) %2 

(c2i -\- Kcid22) a23 a33 -f- /Cc3633 

(Cll+fcirflOaij (C33 + /Cc3<*33)a32   I 
(c:, + Kadn)al3 a33 + Kc3l>33        I 
(«11 + Kc,dH)al2 a22 + Kc2!>22        I 

(«u + A'cirfiOon (C22 + Kc2d22) a23 I 

Under steady-state conditions, we have from (5.19) 

Kfim, (0) a. 

K28m2 (0) a. A3(0) = 

emi(0)+ ATiemi(0)a12 

+ Kc^K,8„„ (0) 
K28m2(0)a2, 8m2(0) + 

+ Kcj|isK,8mii(0) 
«38^3 (0) a31 /C36m3 (0) a32 6m3 (0) 4- 

+ Kc3ti3f<3Qm3(0) 

A (0) = \ ^W+^^e^o) /fsem3(0)a32 1 
11 u    I K$m2 (0) a23 em3 <o>+Kc3\hWm3 (0) | • 

12 u    I Kfim, (0) ol3  era3 (0) + Arc3n3A:3e„,3(0) | • 

A ff» = I Kfiml (0) a'2   6ra2 <0) + K^K$™ <°) I 13 [>      I X,9ml(0)a,3    /CA,2;0)a23 | 

or substituting the steady-state expressions in (5.22), we find after simple 
manipulations 

Yi (0) = {K^KiP^ (0) [(9m2 (0) -f A-c2n2AT2em2 (0)) (9m3 (0) + 
+ Kc3^Kßmi (0) - A-2AT3e„2 (0) 9„3 (0) a^)] YKt, - 
- Arc2ii2Ar2em2 [Ar,emI (0) a12 (em3 (0)+Kc3\i3Kßm3 (0) > - 

-^e,,! (0) /ic3e„3 (0) aI3a32) rrcf2-i- Kc^Kß^ [Ar,eml (0) Ar2e„2 p a12a13— 
- KAfla (9m2 (0) + /Cc#2/C29m2 (0))] K„f3 + [(9m2 (0) + 

+ K^Kßna (0)) (9m3 (0) + Kc3ii3K36m3 (0)) - 
- K2K36m2 (0) 9m3 (0) a23a32] [Kc^Kfimi (0) + Kfimi) tf, + ß12/2 + 

+ ßi3/3)l - IK Ax (0) (9m3 + K.3\i3K3Kßm3 (0)) - 
- A",9„, (0) Kßn3 (0) a13a32j (Kc2K&ßa (0) + Kßm2) (ß21/, + }2+ 

+ ß23/3) + MA, (0) AT26„2 (0) aisa,, - |9m2 (0) + 
+ KCSMÄJ (0) Ä"i6„, (0) a13| (KaK&ßa (0) + AT39m3 (0)) (ß3I/, + 

+ ß32/2+W1 ((eml (0)+/fcii./f.e«, (0)1 [9m2 (0)+ 
+ A>2Ar29m2 (0)1 [9m3 (0) -f Kc3V-3Kß3 (0)1 + 

+ A^t (0) Kßm2 (0) A'39m3 (0) [aI2a23a3I + a21o32a13) — 
- KJ<A* (0) eraI (O) a13a31 [9m2 (O)+Kc^2Kßm, (0)] - 
- K2Kßml (0) 9m3 (0) a32a23 [6ml (0) + K^Kßml (0)1 - 

-K,KßM (0) 8m2(0) ajA,}-1. (5.23) 

We are now in a position to draw some conclusions from this example of 
a three-variable system that can be readily generalized to n-variable 
systems.    At the outset we have assumed that the structure (i.e., the 

P*t [p) 
and the point of its connection to the system) permits stabilizer 
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indefinitely increasing the gain in any of the subsystems without loss of 
stability.    Let the gain parameters of all the three subsystems Kd, 1= 1, 2, 3, 
increase indefinitely.    Then,  as it follows from (5.23), 

lim K1(0) = KBfl+|s^.(f1 + ßuf11 + ßMf,)    (1 = 1.2.3). (5.24) 

In other words, indefinite increase in the subsystem gains under steady- 
state conditions makes the output equal to the reference value Krcf appropri- 
ately modified by the various disturbances.    The effect of disturbances 

depends on load coupling coefficients ß«(0) and the coefficient  e   ((2-    In 

the particular case 9ni(0)=0, which can be implemented without any 
difficulty, we have 

limK,(0) = Klrrf. (5.2 5) 

This result is obtained for the steady-state conditions,  since we have 
taken Fni(0)=0.    This is a natural assumption because in this case,  as 
has been shown in /39/,  increase in gain improves the accuracy. 

Two particular cases deserve special attention: one is the case of 
stabilization by proportional feedback and the other the case of a mixed- 
type stabilizer.    Expression (5.24) clearly does not apply in these cases, 
and we will have to consider them separately.    The following general 
conclusions thus follow from the statics of combined multivariable systems 
with proportional subsystems: 

1. Increase in subsystem gains leads to decoupling,  eliminating all 
interrelationships between the controlled variables under steady-state 
conditions. 

2. Increase in gain improves the accuracy of each controlled variable, 
and if eni(0)=0, all disturbances are rejected. 

If the gain factors are finite,  these conclusions are true only to a certain 
degree.    In the case of finite, but sufficiently large gain, we can speak of 
decoupling or disturbance rejection under steady-state conditions to an 
accuracy of e only.   In the general case, the actual output values for each 
load and for each set of gain parameters can be obtained from (5.23). 

We see from (5.23) that each controlled variable depends not only on 
the disturbances and its own reference value but also on the reference 
values of all the other controlled variables. 

Our conclusions are based on the particular case of a three-variable 
control system.    Generalization to n-variable systems obtains from the 
following considerations.    It is clear from equation (5.22) and from the 
construction of A and A^, that the highest degree of Kc,  equal to the highest 
degree of Kc in the expansion of A,  occurs only in that term of the 
numerator which corresponds to the reference value of the variable itself. 
This explains why structures of this class are inherently capable of 
suppressing the effect of other extraneous components. 

(b)    INTEGRAL SUBSYSTEMS 

A system is integral if and only if an integrating element is included 
in the corresponding single-loop configuration; the integrating element 
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should be unstabilized and must not constitute a structural component 
of the plant /39/.    Under these conditions we have for the steady-state case 

a„(0) = 0.   M0) = Mf,emi(0),   cu(0) = 0, i 
du(0) = 0,    /„(0) = |iJ/f/9./(Q).   pll(0) = Kllißat(0), (5-2 6) 

Wi((0) = 0. J 

Substituting (5.26) in (5.22), we find 

3 

ri = iS (-V1+'AltKc>\itKt9mt (0) + 
3 3 

+iS (-1)I+,^^I^I»I0.I(P)2M»-       (5-27) 
1=1 *=1 

Inserting for J4,» their expressions and making use of (5.26), we find 

Ai = KaKaKJtMh*«* (0) em3 (0), 
A2 = 0, } (5.28) 

whence 

K        ^ci/CACcaACi/CaA:,!!,!!,^^, (0)em,(0)em3(0) 

/C.|ACcaAC,,fC|A:,AC8|iiH,|i,9m,(0)9w,(0)eBi(0)   ft    , 
+ KclKc,K^^a-^Kj<fim (0) era2 (0> em3 (o> l»+pi2'2+ßufd - 

= ncn + ^|[/1 + ß12/2 + ß13/3l- (5.29) 

In other words,  in integral systems, without increasing the gain, we 
find that the steady-state output variable is equal to the corresponding 
reference value plus a contribution from all the loads.    If we select 
6n((0)=0, the load contribution vanishes under steady-state conditions. 

In general,  introduction of the factor %" (°\ makes the variable load 

dependent in integral systems also.    In a number of cases this load 
dependence may prove to be quite profitable.    It is actually utilized in 
the so-called compounding systems, e.g.,  an electric power station 
where proportional current feedback increases the voltage of the syn- 
chronous power generators when the load is increased. 

By reversing the sign of ** (0) the load can be made to increase 0r 

decrease the output value of integral systems in comparison with the 
reference value. 

A significant feature of systems considered in this chapter is that 
load,  or disturbance,  is used as an additional factor for imparting certain 
desirable properties to the system as a whole and consequently to the 
individual controlled variables.    It is clear from equations (5.29) and (5.24) 
that under steady-state conditions the output of both proportional (for 
Kd->-oo) and integral systems depends on the reference value and the 
properties of the transducer and all the loads.    In proportional systems, 
in particular, the load can be employed to improve the accuracy,  if the 
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gain is insufficiently high for meeting the accuracy standards.    It will be 
clear from what follows that load can be utilized as an additional powerful 
factor for modifying the system dynamics. 

§ 5.4.    STABILITY 

The dynamic properties of multivariable control systems are defined 
by equation (5.14).    This equation corresponds to zero initial conditions. 
Introduction of nonzero initial conditions will not alter the structure of 
equation (5.14), only adding a matrix of initial conditions.    There is an 
almost infinite variety of initial conditions,  and no one particular set 
of conditions can be given preference.    However,  zero initial conditions 
have certain other advantages than a simple form of the equation.    Analysis 
of system dynamics with zero initial conditions brings out those properties 
which are dependent solely on the system's structure and the numerical 
values of its parameters.    This information is highly valuable,  as it can 
be used as a foundation in the development of system design techniques. 
In what follows we therefore confine our investigation of system dynamics 
to cases with zero initial conditions. 

The dynamic properties of any i-th controlled variable are specified 
by equation (5.15).    This equation is used as a point of departure in our 
analysis.    Let us first consider the stability of combined multivariable 
control systems.    The stability of a multivariable system,  like that of 
an ordinary linear system,  is determined by the position of the roots 
of the characteristic equation.    The characteristic equation is obtained by 
putting the system determinant A equal to zero,  thus; 

A = 0, 

or in expanded form 

A= 
(c,: Kc2^22) <*21        <*22 ~T Ac2^22 

(c, ] +/Cc,rf,,)o1„ 

(C22 ~\~ Ac2^22) Ö271 

(cjj-\-Kcjdji)an 
ann + Kc rfian 

= 0. (5.30) 

At the outset let us note that the introduction of a transducer 9n! ip) 
»mi 0>) 

(its input receives the overall load or disturbance) does not affect the 
stability of a combined control system as long as all Qmi(p) have no right- 
half-plane zeros,  i.e.,  if the transducers themselves are inherently stable. 
Indeed,  it follows from the notation in (5.5) that each of the quantities 
an, bu, c«, and d« contains the corresponding 6,,,,- as a factor,  and 9mi can 
therefore be taken outside the determinant from each row in (5.30); now 
if none of these 6mi,   i= 1, 2, . . . , n, has right-half-plane zeros, the 
stability of the entire system is independent of the transducer properties. 
This fundamental (though trivial) property leads to a very important 
structural corollary: if the structure of a combined multivariable control 
system (in the absence of load) remains stable at indefinitely high gain, 
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the combined control system generated by introducing external load or any 
other external disturbance into the original system through a transducer 
of a quite general kind also possesses infinite-gain stability.    The only 
restriction in this case is the requirement of minimum transducer phase. 

This proposition can be given a rigorous proof.    Indeed,  let the gain 
factors Kci be related by the expression Ki = r\tK, as in Chapter Four. 
Expanding the determinant (5.30), we write the characteristic equation as 

jft emi (p) [FN (p) + KcFm (p) + KlFm (p) +• 

+ ••• J
TKCFN.N-„(P)] = 0, (5.31) 

or dividing through by K"c and putting -L = m', we find 

n 

^eml(p)[m"FN(p) + m'-^Fm(p)+ ... +F„. N_„(p)} = 0. (5.32) 

It follows from the results of a previous chapter that the difference in 
the degrees of the adjoining polynomials FNi, />;_, is determined by the 
subsystem structures.    If these structures are stable at infinite gain, 
the structure of the combined control system is also stable at infinite gain. 

Introduction of load disturbance thus does not affect the stability of the 
system,  so long as the transducer through which the load disturbances are 
fed complies with the requirement of minimum phase. 

§5.5.    DYNAMICS 

The dynamic properties of multivariable systems, unlike their stability, 
depend not only on the poles but also on the zeros of the transfer function. 
The transfer function of ordinary multivariable systems is expressed by 
equation (5.16), and the generalized transfer function of combined control 
systems is represented by equation (5.17). 

In order to elucidate the dynamic properties of structures (or,  more 
precisely,  the structural features of system dynamics),  let us assume 
that the reference values have the form of unit step pulses (or that all the 
reference values vary according to the same relation, differing only in 

a scale factor).   The factor y*^| can therefore be omitted, as it introduces 

only a scale correction.    The factor y J      entering the second term in the 

right-hand side of (5.17), however,  cannot be ignored.    System dynamics 
are thus determined by the generalized transfer function (5.17). 

Let us establish the dynamic properties of systems which remain stable 
as the gain K<.t is increased indefinitely, assuming fairly high gains from 
the start.    From (5.17) we now have 

TJSF) = T\
A

)I (P) Kcjh) IP) + S (-l)'+1K.*>ly* (P) ltt (P) + 

+ L(~^%i(PnKAPu(P) + du(p))+Nll(p)}TJ^~T^ihkfl!{p)  .      (5.33) 
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The structure of (5.33) in relation to a small parameter is found by 
expanding the numerator in the right-hand side of this equation in terms 
of Kc.    Since Ajh(k= 1, . . . , n) are the cofactors of the corresponding 
elements in the transpose of the determinant (5.30) and since all the 
elements of (5.30) are linear combinations of Kc,  the highest degree of  Kc 

in the expanded cofactors Ajkis clearly n-1.   Now,  since each of the 
terms in the equation, with the exception of NH(p) which multiply Aik, 
is linear in Ka,  the highest degree of Kci in the numerator of (5.33) is also n. 

Let us now concentrate on the construction of the cofactors Aik.    From 
the construction of the system matrix and its transpose it is clear that 
only cofactors of the form An can be expanded into expressions with 
components that are independent of the coupling coefficients aih.    This 
follows from the fact that only cofactors of the form Ai( have diagonal 
elements corresponding to the diagonal elements of the original matrix. 
Keeping these remarks in mind, we write the transfer function (5.33) in 
the form 

K(p)= \m"<i>Ni(p) + m-\^_l(p)+ ... +m<!,Ni_(n_1)(p) + 

+ <P„,-„ (P) + m"%t (p) f, (oH) + m'^%^ (p) f2 („,*) + ... 

■■■ +*yv.-»0')f.(«i») + «nJv,(/»)/1(|J„f»)+ ••■ 

•••+"^iv1-<.-i/P) + >?*-.(P)]}    . (5-34) 

where m = -p-. 

We see from (5.34) that the numerator in the right-hand side of (5.33) is 
a composite function of system parameters,  gains,  and loads.    Let us try 
to elucidate,  in as great detail as possible, the structure of polynomials 
in (5. 34); this will enable us to reach some conclusions concerning the 
general structural properties of these systems. 

First consider the denominator in (5.34). Since we work with structures 
which remain stable for Kci-+oo or, equivalently, form-K), the degrees of two 
adjoining polynomials differ at most by 2,  i. e., 

Since Ait is a triangular determinant constructed from elements of the 
same matrix as A, with the omission of one row and one column, the 
polynomials <ftn obey the same rule and for the degrees of two adjoining 
polynomials we have 

fN ,—fN ■      =NN~NN      ■ "it ™2/+l "/ ™( + l 

This conclusion is obviously also valid for the polynomials <|v ( and %Nil. 
Let us now establish a relationship between the absolute value of the 

degrees of the polynomials in the numerator and the denominator. The 
highest degree in A is greater than the degree of AH by an amount equal 
to the degree of the term au+Kcbu. From (5.5) it is clear that the degree 
of au(p) is greater than the degree of bH(p), so that the highest degree in 
A is greater than the degree of AH(p) by an amount equal to the degree of 
aH(p).    Making use of the expression for bu(p) we conclude that the highest 
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degree in A, or equivalently the degree of FK<S,  is greater than the degree of 
<fNl, the difference being "degree ai(-degree Fmi(p)Qmi(P) . "    If the 
structure has infinite-gain stability and if the additional conditions are 
also satisfied,  the system dynamics is determined by the degenerate 
equation, which has the general form 

<tN,-niP) + $N,-n (p) tn (alk) + SA,,-„ (P) In (htfk) K*Ap)- 
ne-iw^,-.w 

(5.35) 

Let us now find explicit expressions for FN_n, yN  n, tyN_„, and %„ „. 
This will provide us with a starting point for the reconstruction of the 
transients and for the determination of the fundamental properties of 
systems with sufficiently high gain. 

We will make the calculations for the particular case of three inter- 
related variables, and then generalize to the case of n interrelated 
controlled variables. 

The equation for the 1st controlled variable is obtained from (5.17), 
where we put  n = 3: 

r,(p)       4Wfci'.i(f)      i „   .   ...  , , nref(/>) . 
yiK!(p) 

+ ±KMp)l^P)£^ 
+ ^An\KAPn(P) + dn(p)) + Nn(p)\T-^{jx(p) + $nU(p) + 

+ Pisfa(/>))- T An [*=s(P22 W + rf22(P)) + ^22(P)]X 

X- 
1 

Yi*s(P) 

where ß;/= 1 and 

(fclfl (P) + /. + ^23^3 (/») ) + i A3 \K, 3 (P33 0») + 

1 
fW (ft»/l(/>)+IW.Ü»)+/«(*))• 

A = 
o,i (p) + Kci»n (rt        t«n C/>)+fci<'ii W]«n [CiiM+KcirfnOOla,, 

[c33{p)+Kc3dn(p)]a3l [c3s(p)+Kc3d33(p)]a3:i     a33(p)+Kc3b33(p) 

_| ail(p) + K^,b„{p) lc33(p) + Kc3d33(p)]a32\ 
" ~ I   [«22 (/>) + Kc 2<*22 00] <«23      "33 (/>) + /Cc 8*33 (/>) | ' 

/l.n   
Uu(p) + Kcid„(p)]a„ [c33(.p) + Kc3d33(p)]a31 I 
('ll(P) + fcl<'ll(/')]Ol8 ««3(/>)+KC8»S8 0>)               | 

[«n(/') + 'Cci<'ii(p)]ou a12{p) + Kcil>!i(p)        I 
[CM (P) + KC I<*II (p)] a,j [Cj2(p) -f- Kci<fj»(/;)] a23 j 

(5.36) 

(5.37) 

(5.38) 

(5.39) 

(5.40) 

Let the various gains Kct be of the same order of magnitude,  so that 
we may put Kci=KC2=Kci—Kc.    This is not a fundamental restriction, 
since we can always make use of the relation  Ki=r\iK.    Dividing the 
numerator and the denominator in (5.36) by Kl and taking /Cc-»-oo, we obtain 
after simple manipulations a degenerate equation in the form 

xr^dF)[h {p)+^2 (p)+*nh {p)]} ~ Am{p) {l*(p) ~fef§~ + 
+ [P22 (P) + d22 (/>)]    Yil{p)   [Ml (/>) + h (P) + ß23 (/>)] } + 
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where 

1 deg 3 - 

*u(/>) dlt(p)a,2 dn(p)al3 

d22 (p) o2, *22 (p) d22 (p) a23 
ds3 (p) a31    d33 (p) a32    b33 (p) 

 I '22 (?)        d33 (p) a32 I 

I dm(p)<h3   hsip)       I' 

I dii(p)«i2   d33(p)a32 I 

I du(p)<*n   t33(p)       r 
_| du(p)al2   b22(p)       I 

I rfn (P)<*n   d22(p)a23 r 

(5.42) 

(5.43) 

(5.44) 

(5.45) 

The degenerate equation of the 1st controlled variable in an rc-variable 
system obviously has the form 

yj(p) 
yJa,(p)    A„ =i2^W(p)(-i)'+*x 

Let us now derive the formulas for the calculation and analysis of the 
dynamic properties of combined control systems.    As in Chapter Four, 
we intend to make use of the ^-decomposition curve for the gain of the' 
degenerate part of the equation of each control subsystem. 

The gain in the degenerate part of each subsystem is made up of two 
factors,  the plant gain Kt and the gain ^ of the unstabilized section.    The 
gain/Cdegiof the degenerate equation can obviously be altered by changing n,-. 
We will writeKicgi = \iiK,, and hence 

bu (P) = D, (p) F.t (p) Qt (p) 6m; (p) -|_ v..KlFmi (p) Bnl (p) = 

= bl(p) + KdeslFmi(p)Qml(p). 

In this nomenclature equations (5.43)—(5.45) take the form 

h(p) + V-2K2Fm2{p)$m2(p)    d33(p)a32 

d™ (P) «23 »3 (P) + »sK3Fm3 (p) e3ra (p) 
diian d33(p)a32 I 
äii(p)a„   V-3K3 + Käcs3Fm3(p)ä3m(p) I' 

■     _\du(p)al2   ViKi + K2dHFm2(p)Bam(p) I 

=22 KP) 023 | MnW«« 

(5.46) 

(5.47) 

(5.48) 

Interchanging the rows and the columns in (5.42), we expand the trans- 
posed determinant in elements of the first row.    Using our nomenclature 
we thus write 

A3S = ft, (/>) Am (p) + HiKiFml (j>) 9ml (/>) Am (p) - 

— <*22 (P) «21 Ato (p) + d^3lAm (/.), 

and the equation of the ^-decomposition curve for m is 

(5.49) 

^i = 
h (P) A\\b (P) — d22 (p) ai,Am (p) + d33 (p) a3lAm (p) 

K,Fm,(p)Qm(p)Anll(p) (5.50) 

=ya. 
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B(p)- 

D(p)- 

We divide the numerator and the denominator of (5.41) by KtFmi (p) 9mi{p)An b(p). 
After elementary manipulations we obtain 

MP)   _L(p)-B(p) + D(p) /5 51» 

where 

Anb(p){ln(p) + [p>AP) + <lu(p)]y^filft(P) + Qnf2(p) + Mi(P)]} 
L
(P)= KiFM(p)K'(p)Am(P) ; • 

^o>{/..(rt-£gjg-+ 
KiFm{p)Qml(P)Anb(P) 

+ [P« (P) + *a (/>)]   yul(p) Ißaifi (p) + f. (P) + foth (p)]) 

K|fm'iO>)em,(pMii»0>) ' 

^.^.(pje^fpMnMp) 

+ [P33 (P) + <?33 (P)]     K[jf(p)    [Psif I (P) + Ps»/» (P) + f3 (P)] } 

KT^PJ^TP^W^ 
„/n\_M        I       6, (p) ^| ift (/>) — rf„ (j>) agi^igfr (P) + ^33 (P) «31^136 (P) 

/> = yco. 

This equation can be readily generalized for an n-variable system.    It 
may be used as a working formula in stability calculations and in selecting 
system parameters that ensure the required performance characteristics. 

Indeed, the denominator in (5.51) is the sum of the gain HI and the 
corresponding D-decomposition curve.    If the D-decomposition curve is 
available (from which the stability of the entire system can be inferred), 
the well-known rule /39/ can be applied to directly determine from this 
curve the values of the denominator in (5.51) at any frequency.    The 
numerator of (5.51) is the equation of the auxiliary curve.    The dynamic 
properties of the entire multivariable system are completely determined 
by the position of the D- de composition curve and the auxiliary curve. 

As an example we consider a two-variable combined control system, 
from which we will try to deduce some general properties of combined 
control systems. 

For n-2 equation (5.51) is written as 

M/>)   _Hp) + N(p) + P(p)  ,m (5.52) 

where 

T^(rt= FTF) •      P==J*- 

lip)— Allb(p)lu(p) 
K1Fml(p)Qm(p)Ani(p)- 

Aub (P) [Pu (P) + dtl (p)]        l        [h (P) + Pi,/, (p)] 

™W— KiFm(p)Bm(p)Anb(p) 

P(n\ flKtiP)  
H\P)~ *,/=■„,, (p)em,<pMi,„(p) 

+ [p„ (p) + rf„ (p)] r,ref(p) IPaif> (P)+f, (p)] 

^Fmi(p)Ci(p)Anb(p) 
MpMni(p) —rf„(p)a,i 
KlFms(p)6mU>)Anb{p)  • 
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Inserting for the operators in (5.52) their expressions from (5.5), 
we obtain 

YAP)   _Ml+eü>)1+v(p) + S(rt-E(/>) ,, co. 
Yirtip) ^(i) • (5.53) 

where 

and 

where 

v(,)=z^m[Mp)+ßi2M,)]_i_i 

* (/>) = Kf« (P) Q, (/>) 9ml (p) a12 { K^2Flm (p) em2 (,, ^M. + 

+ [K&2Fm2 (J>) e„2 <j>) +K2Fn2 (p) Q2 (p) 6m2 (/,)] x ~ [ß21/, (/>) + /, (p)\ }, 

I (p)=KjFml (p) eml (/>) [^^«s (/>) 9m2 (/>)+A> 0») Q2 (/>) Fm (P) era2 (/>) 

- (n) — pi (P) <?' (P) Fn, U>) »mi (/>) IP,] — K,FM (p) Q2 (p) 6m2 (p) a„ 

/>, = [(!,/(/„, (;>) eras (/>) + D2 (p) <?2 (p) /=■„, (p) em2 (p)]. 
Pi = K,FmI (p) em, (p) lK&2Fm2 (P) 9ra2 (P) + D2 (p) Q2 (p) Fn2 (p) Bm2 (p)]. 

The following conclusions follow from (5.53). 
1.    Suppose that the controlled variables are coupled neither through 

the plant nor through the load,  i.e.,   aa= 0 and ßi2=ß21=0.    Then 

u +u  9"' (P)    f> (P) 
r^p)  ■■■tt'+"' em,(rt-F^?(rt        , /- -4. 

^'"t"       f.,(f)*:, 

and in the absence of load disturbance we find 

_Yi±£L_= B  /c cc\ 
I'lKfO') „    ,    Di(p)Qi(p)Pni(P)' KO.OO) 

^ Kfm, (P) 

We see that the auxiliary curve is sensitive to load signals.    The function 

j^j can be so chosen as to ensure a desirable transient.    As it could have 

been expected, the function -^^ does not influence the stability of the 

system.    If ai2=0, ßi2=ß21 =£ 0, the system dynamics can be improved by 
supplementing the self-load with load from other subsystems. 

2.    The system dynamics are invariably determined by the D -decomposition 
curve and the auxiliary curve.    The auxiliary curve is highly sensitive to 

the function |^>.    Hence follows a very significant conclusion, namely 

that the   system dynamics can be altered between wide limits with the aid 

of transducers n" , .. Vml(P) 
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3.    The equation of the ^-decomposition curve can be written in an 
alternative form.    Carrying out term-by-term division in the second term 
in the denominator of (5.53), we obtain for the D-decomposition curve 

DAP)QAP)Fm(P)   ,   Kt FmJßLs/ 
^ = Kfmiip) + K,   FnAp)  * 

v 6„,, (/>)<?,(/>) a» (p)  (5-56) 
X 6ml(P)[K3\iiFmAP)Qm2(P) + t>i(p)Q2(p) Fn,(p)äml(p)] ' 

The first term in equation (5.56) is the D-decomposition curve for Hi in 
the uncoupled case, the second term gives the contribution from coupling. 

Equation (5.56) can be written in a still different form: 

n—n    i y Fn'(P) Qi(p)<hi(P) (5.57) 
^~°*

+KI
TJP)    oml(P)Fm,(P)[»2-°»y 

where 

Uv*~ K,Fm2(p) 

is the D-decomposition curve forn2(the gain of the second subsystem). 
D-decomposition curves for ^ and n2 can be plotted before we have 

actually decided what  ^'^ are to be used. 

D -decomposition curves enable us to determine all the terms in 
equation (5.57), with the exception of the transfer function 6mi(p) which is 
chosen in compliance with a certain quality criterion of the entire system. 
We have thus derived a formula for the synthesis of combined control 
systems. 

The method described in this section can obviously be applied to systems 
with n controlled variables as well. 

§ 5. 6.    LOAD REJECTION 

The effects of load and other disturbances are dealt with in separate 
sections of the following chapters.    At this stage of our discussion of 
combined control system dynamics, however, we cannot ignore this 
problem altogether.    It should be emphasized that the load rejection* 
is a characteristic feature of combined control systems. 

Since load rejection is generally related to the problem of coarseness 
in the sense of A. A.  Andronov, we shall investigate the complete, and 
not the degenerate equation.    Suitable working formulas for load rejection 
in the degenerate equation will be given at a later stage. 

Consider the equation of the /-th controlled variable in a system with 
n variables which are coupled through the plant (equation (5.15)).    We see 
from (5.15) that the load does not affect the controlled variable if 

AJI U>) IK. i <Pu (P) + du (P)) + Nu (p)] = 0. (5.58) 

We are dealing with loads applied to the plant only. 
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Equality (5.58) is satisfied if 

(a) Aj,U>) = 0 

or i 
f (5.59) 

(b)  Kcl(p„(p) + du(j>)) + Nu(p) = 0. 

sinoW^Ä86611; h0WfK
Ve,r', that the re^uirement ^«(P) = 0 is inadmissible, 

since   as it follows from (5.15), K,ref is also multiplied by Aii{p),  and the 
condition A„(p)= 0 would eliminate the entire control system/as well as 
LI1 vT    LKJdu ■   "|V 

Thus load rejection is based on the condition 

Kc i lP„ (p) + du (p)\ + Nu(p) = 0. (5.59') 

Inserting for the operators in (5.59') their expressions from (5.5), we find 

*"c, [ W„i (P) 6,, (p) + KtFni (p) Qt (p) 9m/ (p)\ + 

+KiQilP)*m,ip)ti,(p)Jf„l(p) = 0, (5.60) 

or 

Ac'lera/(P) Qllp) +T^Tä\ + RI(P) = O. 

whence follows an expression for the transducer ratio: 

*al(P) =_(p ,  ,  , K   £ju(py\Qi(p) 

_        (^(P)Fml(p) + KclF„l(p))Ql(p) 

V-lPml (P) " (5.61) 

i* J^iS ^Uncti0n is fairly difficult to implement since, as it follows from 
(5.61), the degree of ent(p) should be greater than the degree of em,(p)at 
least by an amount equal to the degree of the product Rt(p)Qtlp)     This is 
precisely the degree of the section which includes the stabilized component 
Ri(p) and the unstabilized component Qt(p). 

The problem, however,  is solved very easily by a simple modification of 

structure.    Clearly,  the effect of load is eliminated if the output of -|sÜÖ.i8 

delivered directly to the plant input.    Indeed, first we write equation OMSl) 
in a different form: '    ' 

J^i I*'     dm(p)   ,    /C.j   F„i(p)   ,  ,     n 
RtiP) QiiP) Qmi(P)^"Ri{p) Fml(p) + l==0- (5.62) 

Now the transducer output is delivered directly to the plant input.    In the 

result of this operation, the factor before |^g should be divided by the 

transfer functions of those elements which are dispensed with in the new 

This problem is considered in more detail in the next chapter. 
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configuration,  i.e., the transfer functions ^-^y-    We thus obtain for 

the transducer ratio 
e„i(/>) _     r Kct   Fni(P)   ,  .1 (5.63) 
~QdpT~       UiÜ>)   Fml(P)~T~   J' 

This transfer function can be implemented without difficulty. 

As we have already noted, |^| does not influence the system stability, 

provided that 6mi(p) has left-half-plane roots only.    The problem of 
Andronov's coarseness therefore does notarise in this case. 

§ 5.7.    LOAD REJECTION FOR  A"c->oo 

In the preceding section we showed how to choose the transducer ratio 
and how to connect the transducer to the system so as to ensure complete 
load rejection.    Earlier we demonstrated the advisability of using structures 
which are stable for /(c,->oo.    In this section we correspondingly proceed 

to consider the choice of -|^- for this special class of structures, when 

the fundamental dynamic properties of the system are entirely specified 
by the degenerate equation.    Our aim,  of course,  is to achieve perfect load 
rejection. 

From (5.46) it is clear that the load does not affect system dynamics if 

Pu(p) + du(p) = 0. (5.64) 

Inserting for p«(p) and d«(p) their values from (5.5), we have 

A>^m, (/>) 6ni (p) + KfBl (p) Qt (p) Bm, (/>) = 0 

or 
_JH_^niSPL== — fnliPL (5.65) 
Ql(p)   *ml(P) Fml(P)' 

This can be achieved without difficulty if the structure is appropriately 
modified.    Indeed,  if the transducer output is connected as shown in 

Figure 5.2 (after the element with the transfer function -Q^}, the left- 

hand side of (5.65) is divided by -Q^, and for Kci-+°° we finally have 

*m(P) _ fm(P)_ (5.66) 
&ml(P) Fml(P)' 

There is no need to emphasize that a transducer with this transfer 
function can be built without any difficulty. 

In the general case of an n-variable system, load rejection is achieved 
by using structure configurations shown in Figure 5.2.    The transducers 
are chosen from the condition 

*nL = -IsL, (5.67) 

141 



where 1= 1,2, . . . , n. 
In practice, the system can be further simplified by using a stabilizer 

which doubles as a transducer.    In this case the load disturbances  2ß,Js 
6=1 

are delivered directly to the stabilizer input, as is shown in Figure 5.3. 
There is no need to adjust the parameters of the stabilizer and the 
transducer to achieve matching, as there is only one set of parameters 
in question, the parameters of the stabilizer. 

Bm'P) 
Bmi(p> 

Mt 

-*&*-   > 

<>■ 

«cl 
Wp7 
> 

n 

»=1 

< 

> 
n- 

Fmi(p) 

n 

FIGURE 5.2.   A combined control system with load 
rejection. 

Mt /fct 

Ls?v*. 
*l 

> 
X g *■ 

> 
n n 

, 
s? 

, % ' • 

< 

*/ 

£*i*y» 

'mi h> f* 

FIGURE 5.3.   A stabilizer used for load rejection. 

Thus, for sufficiently large gain Kci, the structure in Figure 5.3 
ensures that the control process is independent of loads and disturbances 
applied to the plant.    (The case of disturbances,  loads,  and other inter- 
ferences applied not to the plant but elsewhere in the system will be 
considered separately.) 

142 



Chapter Six 

INVARIANCE AND NONINTERACTION IN 
MULTIVARIABLE CONTROL SYSTEMS 

§ 6.1.    INTRODUCTORY REMARKS 

In automatic control systems one always faces the problem of eliminating 
the effect of disturbances (loads) on the variation (or,  in particular cases, 
constancy) of the controlled variables.    In other words, we have to deal 
with  rejection   of   external   disturbances   acting on the control 
system. 

The principle of invariance, when some generalized coordinate of a 
dynamic system is independent of disturbances, was formulated by 
N.N.  Luzin in 1940,  as a generalization of the previous results of 
G. V.  Shchipanov.    The problem of invariance was subsequently developed 
by Kulebakin /26, 27/,  Petrov /51/, Fel'dbaum /66/, Kukhtenko /24/, 
and others (see Bibliography).    Rozonoer /58/ reduced the problem of 
invariance to a variational problem. 

Synthesis of systems where the controlled variable is entirely independent 
of external disturbances, the so-called perfect load-rejecting systems,  is 
discussed by Shchipanov /76/.    In later researches /27, 31, 32, 51, 56/, 
Shchipanov's results were considered in very great detail and we now have 
a thorough understanding of his fundamental contributions, as well as of 
some inaccuracies in his work. 

The practical significance of Shchipanov's ideas is due to the fact that 
the load-rejection principle is realizable in real systems.    Petrov /51/ 
formulated the two-channel principle, which provides us with a key to 
the design of single-variable systems with complete or partial rejection 
of external disturbances. 

In this chapter invariance is considered in application to multivariable 
control systems.    The characteristic problems of multivariable control 
systems,  aside from those which,  though solved by the general methods, 
refer to single-variable systems, arise from the fact that each controlled 
variable is influenced not only by various disturbances but also by all the 
other controlled variables: all the variables interact through the plant, 
the measurement devices (in multidimensional servosystems), and the load. 

One of the fundamental problems in multivariable control is the problem 
of noninteraction,  i.e.,  choice of structures and system parameters 
ensuring that the various controlled variables do not interact,  so that the 
control subsystems for each variable can be considered independently of 
all the rest. 
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The problem of noninteraction was first formulated by I.N. Voznesenskii 
/10, 11/ and he was the first to propose methods for the selection of 
regulator connections that ensured active control by each subsystem. 
Noninteraction is the subject of numerous Soviet /5, 6, 21, 19, 52/ and 
Western publications (see Bibliography at the end of the book). 

The problem of noninteraction is closely related to the problem of 
invariance.    It is shown /27, 29, 51/ that the noninteraction conditions 
sometimes coincide with invariance criteria. 

It is clear from the results of Chapter Five that rejection' of external 
disturbances does not ensure noninteraction.    Our task is thus to consider 
the relationship between invariance and noninteraction.   It will be shown 
that invariance in relation to external disturbances does not automatically 
ensure noninteraction and vice versa: noninteraction does not automatically 
mean invariance.    That these problems should be considered separately 
follows from certain physical realizability conditions, and in particular from 
conditions of stability of the entire multivariable system.. 

§ 6.2.    THE PROBLEM OF NONINTERACTION 

In noninteracting multivariable systems,  the controlled variation of one 
of the variables does not influence the other variables.    Noninteraction 
in this sense may be  complete (or perfect) or alternatively it may 
hold true to a certain finite accuracy. 

Noninteraction can be considered from two points of view.    First,  it 
may be attributed to what we call technological factors.    As an example, 
take the system of frequency and speed control in an asynchronous motor. 
Desirable performance characteristics,  especially when starting or 
stopping the motor,  are ensured by varying the stator voltage and the 
supply current frequency according to equations which differ from the 
natural variation of the variable-frequency outputs (e.g.,  in a variable- 
speed synchronous generator). 

Second, noninteraction may be regarded as a certain dynamic property 
of the system,  an organic outgrowth of its structure.    This case is of 
considerable importance and will be treated separately in the following. 
I will first discuss the fundamental results obtained by Voznesenskii /10, 11/ 
and American authors /77/ and then proceed to analyze my own contributions 
to the subject. 

1.    Voznesenskii's fundamental results /10, 11/ 

These results deserve special attention, as they were essentially the 
first contributions to the theory of automatic control and laid down a 
foundation for the design of quality control systems /10, 11, 19, 52/. 
They also provided a point of departure for numerous later'researches. 

Voznesenskii's results apply to cases when the controlled variables 
interact through the plant only.    The problem is thus stated as follows: 
choose   a   control   system   such   that   noninteraction   of 
the   individual   controlled   variables   is   ensured. 
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The problem is investigated for a multivariable control system 
described by the following set of differential equations: 

dt 

dt 

= Hi —1*10. 

= V-„ — H„o. 

(6.1) 

where at are constants, i/j are the controlled variables, |x,o are the steady- 
state loads, torques, etc., [it are the loads, torques, etc., corresponding 
to the variables yt. 

The quantities n( are controlled by the controllers m,-.    To ensure 
noninteraction, nf is controlled not by the t'-th controller alone but by 
all the interconnected regulators jointly.    The behavior of the controllers 
is thus described by the following set of equations: 

H, = ^.m, + kl2m2 -4- ••• +k,„mn, 
(i2 = k2lml-\-k22m2 + ... -\-k2nm„y 

\in = kmmi + k„2m2 + ... -\-k„„m„. 

(6.2) 

where kik gives the effect of the 6-th controller on the t'-th parameter JJ,-. 

In a system with \a controlled variables a measuring device (a sensor) 
is provided for each variable.    Ideal transducers are assumed,  satisfying 
the relations 

where  i = 1, 2, 

yi = n,Zi, (6.3) 

n.    The various controllers are described by the equations 

ml — 'lOT'lA+'AT   •••   ~\~hnzn' 
m2 — '20   1    '21zl H- '22z2 T   • • •   "T hngn> 

mn = ln0+lnlzl + ln2z2 +   •■■   +'»A' 

(6.4) 

Here lih are the transfer numbers between the measurement devices zh and 
the controllers m,-. These are the numbers to be determined if noninterac- 
tion is to be ensured. 

Inserting for m4 in (6.2) their expressions from (6.4), we find 

M'i==Kn'n"r*ll'llzl "r^llMS2!   1   ^u'l^S   1     •••  ~T~ &\\L\nzn ~r 

T~ «12^20 ~T ^i2t21zl ~T k^2l22Z2 -f- «i2^23Z3 -f-   . . .   -f- k\2l2nZn ~\- 

-)-...-)- «13/35 -\- kalziz\ -f- klsls2z2 -\- k^l^z^ -f- . . . -f- 
n n n 

-+k\3l3nzn + •■■= 2*li'(0 + zl ^lkuln +Z2^kuli2 + ... 

•■■  -\-zn1ikulin, 
1 

nan n 

t*2= 2*2>'i0 + zl2*2.'n + 222*2i'l2+   •••   +2n2*2i'//!. 

V-n= S*ni-'/0 + zl2*n;'n + z2S*m-'i2+  •••   + z„2j */.,';„• 

(6.5) 
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The coupling coefficients lih are chosen so that all the sums of the 
products kvslsq, p 4= q, vanish,  i. e., 

SU»=°   for    i*P- (6.6) 

In (6.5) there are n(n+\) unknown coefficients, whereas (6.6) provides 
only  n(n -1) equations for these coefficients (n coefficients of the form 
li0 and n coefficients of the form kit are not included).    The number of 
missing equations is thus 

(»+l)n — n(n— l) = n? + n — re2 + n = 2«. 

The 2n missing equations can be obtained from the following conditions. 
Making use of (6.6), we write (6.5) in the form 

n n 
n j = 2 klsis0+z, 2 klsisV 

i=i i 

n It 

1*2=21*^*0+«2 53 V*    1 (6.7) 

n n 

V-n = 51 *«'J0 + zn 53 knsls„. 
1 1 

If the control domain for the given range of n,0 is denoted by 

At*l = V-i max — Umin. (6.8) 

the coordinates of the measurement devices by zlml„ and z,maj respectively, 
and the irregularity coefficients by 

ft —-  yimax— yi mln (6.9) 

we can make use of (6.3) to obtain after simple manipulations 

An,= 

A(i2 = 

f>iy ?Sw-, 
82F20 

^J ^2i»«S ' 

Ai*.=—^S*«7- 

(6.10) 

If Am and 6f are known, the set (6.10) provides n additional equations. 
Now the last n missing equations are obtained by substituting the steady- 
state values (iiothat correspond to the steady-state controlled variables yi0 

for(iioin (6.7) and remembering that zm = ^-: 

n n 

^20 = 2j kis IsQ + ~- 2J k2slS2y 

^o=s*»^+-rLi]*»A 

(6.11) 
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Equations (6.6), (6.10) 
unknowns,  ho,..., /i„, I20, ■ ■ ■ 

Solving these equations for /«, we find 

&H/1] A 

and (6.11) give n(n+\) equations in n(n+l) 
tZn Inn • 

l,,= — 
fytyo 

(y=l, 2, ..., ft;    i = l, 2, ft), (6.12) 

where 

A = 

*11 *12     • •      *1B 

*2I *22      • •      *2/l 

*y. */2      . •   */n 

*ni *n2     • *nn 

and A,-,- is the cofactor of kjt.    Having thus selected the transfer numbers lik, 
we ensure noninteraction within the framework of our assumptions. 
Noninteraction is thus ensured if the following are known: 

(a) the matrix of the coefficients \\ktj\\, where  i= 1, 2, . . ., n, / = 1,2, . . ., n; 
(b) the irregularity coefficients 6,-, where 1= 1, 2, . . ., n; 
(c) the normal loads n,o, where £= 1, 2, . . ., n; 
(d) the  rated (guaranteed) steady-state values of the controlled variables 

</,„, where /=1, 2, . .., n. 
It follows from the preceding that noninteraction is primarily the outcome 

of a certain mode of operation.    In a different operating mode,  interaction 
may be restored. 

We have discussed here the fundamental contributions of Voznesenskii. 
Later researches are based on his work, and their aim is to establish non- 
interaction criteria under more complex conditions. Note that Voznesenskii's 
presentation is most elementary,  since each controlled variable is described 
by a first-order differential equation.    Furthermore, ideal transducers 
(measuring devices) and controllers are assumed. 

The noninteraction conditions become obviously more complicated in 
slightly more complex systems.    It has been shown /19, 52/ that in indirect 
control systems employing the same simple plant as before, noninteraction 
requires equality of time constants of all the servomotors. 

We do not discuss here further developments of Voznesenskii's approach, 
and the reader is referred to special literature /5, 6, 16, 19, 52, etc. /. 

2.    The method of Boksenbom and Hood /77/ 

Boksenbom and Hood /77/ published their results in 1949 and they are 
essentially similar to those of Voznesenskii.    The only difference is the 
mathematics of the solution. Almost all later Western publications in this field 

/81, 82, 77, 78, 79, etc./ are based on 
the original paper of Boksenbom and Hood*, 
and we therefore proceed with a detailed 
analysis of their method.    Consider a plant 
with  i controlled (dependent) variables y, 
which are henceforth referred to as output 
variables or briefly outputs, and n independ- 
ent inputs x (Figure 6.1). 

x, *■  »• 
x* *"  » 
x„ *■  * 

If, 
to 

FIGURE 6.1, 
object with 

A multivariable controlled 
n inputs and / outputs. 

With the exception of the book by Mesarovic /85/ , mentioned in Chapter Three. 
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If each output is dependent on all the inputs, we may write the following 
set of equations in Laplace transforms: 

Yl = £I1A'1 + EnX2-\- ■■■ + ElnXn, 
K2 = E2\XX -\- E^X2 -(-...+ E2nX„, (6.13) 

Y, — EixXx 4- EnX2 + • • • + EinX„ 

yi=2ElkXt,       1=1,2,..., I 
*=1 

The operators Eih are the transfer functions between the 6-th input and 
the i-th output. 

Xf   X% Xt      Xj.j   Xit 

<■    \< 

^11^12' 

^21^22     ^21 

^ni ^m 

2n 

*J» 

'* 

■n 
E' 

FIGURE 6.2.   Schematic representation of 
the controlled object (see Figure 6.1). 

Equation (6.13) may be written in matrix form (Figure 6.2).    Each matrix 
element Eih stands for the corresponding transfer function.    Each input as 
if acts on its own column and, upon multiplication by the elements of that 
column, gives the output sum in the corresponding row.    Thus Xi acts on the 
first column: it is multiplied by each element of that column,  the products 
are added up, and the sum is the output written in the first row.    From 
the general matrix E we isolate the first / columns, this being the number 
of dependent (controlled) outputs,  and form an i Xi square matrix. 

It is assumed that with n inputs only i<n outputs are controlled.    For 
this reason n — i inputs can be manipulated as desired. 

Figure 6.3 is a functional diagram of a control system for a single 
variable.    The controller outputs X,. are represented by the set of equations 

(6.14) 

*i = en <r, - y,)+c» (r* -Y2) +.. 
+ c'ut+i)(Xi+i~Xi+i)Jr 

JC2 = c,, (K, - K,) + c22 (K, -J2)+ • • 

■+c11(Yl-Yl) + 

••+<„ (*„-*„> 
+ Cv(Yl-Yl) + 

■■+cL(*n-Xn)' 

X„ = cnl(Yl-Y1) + c„2(Y2-Y!) + . ■ +c„!(Yt-Yl) + 

■■+<n(Xn-*n)- 
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First note that the controller outputs depend not only on the deviations 
of the respective controlled variables but also on the deviations of all the 
other variables,  and equations (6.14) are analogous in this sense to 
equations (6.2) in Voznesenskii's method.    The only difference is that 
contributions from the slack inputs Ai+1,  etc., are added. 

\f Controller 
S(p) C(p) 

Disturbances 

1 1 
X 

E(p) L(p) 
? K 

*    \ 
Plant 

y-y 

Measurement     T 
.    . I Setting Y 
device I ° 

FIGURE 6.3.   A single-variable control system. 

An obviously interesting approach is to use the slack inputs as additional 
control factors.    Equations (6.14) can be written in the following abbreviated 
form: 

-£Ct!(Yr ■Ay. [6.15) 

Figure 6.4 is a matrix representation of (6.15).    The controller matrix 
is interpreted in the same way as the plant matrix in Figure 6.2.    The 
inputs Y—Y and X— X act on the columns and the row outputs are X.    Each 
input is multiplied by all the column elements, and the sum of these products 
in each row gives the corresponding output. 

C C 

C/r^2 cn<f"ci» 
cerC22 e,t fa 

£/£.?- ~cM "     I II      II 
FIGURE 6.4.    Schematic representation of 
a controller. 

A complete control system is obtained when the previous equations are 
supplemented with the equations of measurement devices and servomechanisms. 
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For the measurement devices we may write 

/ v  ■i'VV-*   V 

(v=l, 2, ..., i), 

(\i = i + l,i + 2, ...,«)J 

(6.16) 

In what follows it is generally assumed that each independent variable 
has its own servo, which is actuated by the corresponding signal X. 
Introducing the disturbances fh, we write 

** = *»** + /*       (* = 1. 2 ft). (6.17) 

We have thus obtained the following set of equations for a multivariable 
control system 

The plant equation 

ri = i£/***     (/=i. 2 «). 

The controller equation 

X~>= S>(^- K)+J+ cUX^-X^k^, 2 ft), 

V VV     V1 *,=« 

The equation of the measurement device 

ft). 

., ft). 

(v=l, 2 i\ \i = l-\-l, ... 

Servo and disturbances 

** = *«** + /*       (*=1. 2, 

(6.18) 

This set can be represented, as before,  in matrix form.    If the plant 
has three controlled variables (dependent outputs) and five independent 
inputs,  the corresponding matrix is shown in Figure 6.5. 

1/; 
1 K*~ G» Gz ci3 en cis 

1—r*-| £; ^ ^j £*4ä$- 

^11 ^12  E/3 £H ^IS 

*ZI  *22^23^24*25 

*3I ^32^33^3^35 
Plant 

i   |   |   |   , , 

.K   £ £ ^ *5 
Three  Y settings 

FIGURE 6.5.   Matrix representation of plant and controller. 
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Solving (6.18) for the controlled variable Yt, we find 

i',=|i;iVA(i'v-iv/v)+ 

+ 2    21 EJkSk»C'kv (*„ - L^XA + IS Ejtf». (6.19) 

(/=1, 2 /), 

*»= 2 S„C* (Kv - ZvvKv) +|5MC;^ - LWXJ +tk (6.20) 

(* = 1, 2 n). 

Now that the system equation is available, we can proceed with the 
problem of noninteraction.    Several different kinds of noninteraction are 
considered in /77/.    The corresponding matrix representation is given 
in Figure 6.6. 

"33 

t?T 
Or 

D- 
S£ 

ESC 

SC 

XM 

ESC' 

■SC'- 

fi    fi  fj   f+   ff 

■ss 
Q 

System matrix 

FIGURE 6.6.    Illustrating noninteraction conditions. 

Noninteraction is first considered in its most elementary sense: the 
output Yt is changed only by changing the setting YiK,, and none of the other 
variations affects this quantity; alternatively by changing the setting YiK, 
we change only one controlled variable Yit or,  in general,  each controlled 
variable is affected only by the variation of its own setting and is independent 
of other reference values. 

Noninteraction is obtained if and only if the system matrix is diagonal. 
The noninteraction condition is thus that all the nondiagonal elements of 
the system matrix are zero.    For 1=1,2, ..., i and / =£ t we have 

2 £;iAsCj/=0 (6.21) 

and for all the others, from \i = i-\-1 to n, 

OimCi 11110)1« = (6.22) 
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C^=0. (.6.23) 

Equations (6.22) and (6.23) show that from H=J+1 to (i = n, the elements 
of the /-th column in the matrix C are all zero.    The same conclusion 
obtains from (6.21) for the elements of the column t from /= 1 to    /=/ 
(when/ +i), i. e., 

S£yA*CM = 0. (6-24) 
*=i 

Relation (6.24) yields  i-l equations in i unknowns, and we may thus 
write a relationship between any two elements of column / in matrix C. 

We now proceed to establish the noninteraction conditions in explicit 
form.    Returning to equations (6.19) and (6.20), we isolated in (6.19) 
the term with the setting Yt and write 

'      ft=l v=l * 

+ 2 Ej^C^Y, - LttY,) + 2 EßU (6.25) 

and 

xk = 2 sMc,v (KV - IWKV) + 2 skkcklx (^ - vg+f, + 
v=l H=f+1 

+ SMCt,lYt-L„rl). (6.2 6) 

In order for the setting Yt to influence only the controlled variable Y), 
j=t, without interacting with the other outputs,  it is necessary that 

i 

1 2£,A*CS, = 0,       j+t. (6.27) 

Moreover, in (6.2 6) only the last term may depend on Yt; all the other 
terms should vanish,  i.e., 

SMC*v = 0   for   v+t, (6.28) 

or 

Civ=0, 

where 

k = l+\, ..., n. 

Making use of Kronecker's delta 

6U=0 for i + ky 

ö,t = l for l = k. 
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we write (6.27) in the form 

2 £y*5„CM= 2 bitEjkSbkCtl       (/= 1, 2, ..., i). (6.29) 

For any given (fixed) /,  equation (6.29) gives   i- 1 linear algebraic 
equations'in / unknowns ShhCkt, k = 1, 2, . . . , n.    Equations (6.29) therefore 
describe the relationship between these unknowns but do not determine 
their actual values. 

We make use of the following known property of determinants.    Putting 
\E)*\ for the cofactor of the element Ejk in the determinant |£*|of the square 
matrix ||£*||, we may write 

t 

S£/*|£}/| = 0      for   k+t (6.30) 

and 
i 

2£y*|£^| = |£*l   for   k = t. (6.30') 

Multiplying the two sides of (6.29) by \E',I\ and summing over / from 
/= 1, to   /'=(', we find 

it ti 
S   S|£yi|^*5**C„=S   2|fi5,|6,^*5MC«. (6.31) 

Making use of (6.30') we now write for   k=l 

|£*   I    ' 
SppCpt — —~r2j ^SkkCkt,. (6.32) 

In particular, 

if; 
Sifiu— |£» | ^i^nSkkCki- (6.33) 

*=i 

Dividing (6.32) through by (6.33),  we find 

^L = BA.       (p,;=1, 2, ...,/). (6.34) 
u°a 

We have obtained a relationship in which the nondiagonal matrix elements 
are expressed in terms of the diagonal elements.    Choosing the transfer 
function SC from (6.29) and (6.34) we ensure the necessary and sufficient 
conditions of noninteraction.    The problem of noninteraction is thus solved 
for the case when the number of inputs is equal to the number of outputs. 
In our case, however, the number of inputs is greater than the number of 
outputs,  and we should further consider the choice of C. 

To this end, noninteraction of the variables n=i'+l n should be 
ensured.    Along the same lines as for ys, j=\ i, it is proved /77/ 
that the noninteraction conditions for j=i+\ n are satisfied if the 
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transfer functions of the matrix Care chosen from the following relations: 

i 

S    C' ~~ 2 \EKj\ Ekr 

SrAr l£'l 
(/ = 1, .... /, r — i+l, / + 2, ..., n). 

(6.35) 

Summing up, we write the conditions of complete (perfect) noninteraction 
for any variable in the form 

where 

jx = /—{- 1, ..., «, 

*=1, 2 i, 

l* = /+l n       (n^r), 
r — t-(-l, ..., re, 

where 

siJcJl _K/I 
svvcvv l£vvl ' 

/, /, v = 1, 2, ..., /, 

SJJCJr     
213,1*» 

fc = l 

SrrCrr |£*l 

and 

(* = 1, 2, .... I,   r = t + l «). 

This concludes our discussion of the principal results obtained by 
Boksenbom and Hood.    Further developments by Western authors are 
mainly based on these results.    We will not consider the methods of other 
authors /81, 82, 78, 79/,  since they are of no fundamental interest in 
connection with the problem at hand.    The main conclusion from the 
preceding discussion of noninteraction conditions which is relevant for our 
analysis of the problem is that neither the first (Voznesenskii's method) 
nor the second (Boksenbom and Hood's method) approach discloses the 
structural features of noninteraction,  so that neither is suitable for 
elucidating the structures in which noninteraction is attainable. 

§ 6. 3.   NONINTERACTION AS A DYNAMIC PROPERTY 
OF A CERTAIN CLASS OF STRUCTURES 

We now consider multivariable control systems with controlled variables 
interacting through the plant, where the nature of coupling is determined 
by plant properties.    The system comprises n variables,  each constituting 
a closed-loop control subsystem.    We shall discuss a number of different 
cases. 

154 



*i 

y cl 
2 "I J-~L      I  

'+T,P 

> 
ZatH r„ 

H=1 

FIGURE 6.7.    The /-th control loop with 
its individual controller. 

Case   1.    Controlled objects described 
by first-order differential equations and 
ideal controllers. 

Let each controlled variable be described 
by a first-order differential equation.    The 
controllers being ideal, their transfer 
functions are structurally equivalent to 
gain parameters for each variable.    It is 
clear from § 6. 1 that this is the control 
system investigated by Voznesenskii. 

Each single-variable subsystem can 
be replaced by a structurally equivalent aperiodic loop (see Figure 6.7). 
The processes in this system are described by the following set of 
differential equations: 

n 

[Ti4-+ \ + *i*.i]r.+ff, 2««>0=tfi*'.i»'.,«,+*i/,. 
1 _0 >=2 

n-I 

<=1 

(6.36) 

where Tt is the time constant of the plant in relation to the i-th controlled 
variable, Ki the plant gain in relation to the i-th variable, Kci the controller 
gain for the «-th variable,  a,* coefficient of coupling between i-th and A-th 
controlled variables.    Here a« is a function of plant properties; it may be 
a constant or a function described by a differential equation. 

Laplace-transforming equations (6.36) and assuming zero initial 
conditions, we obtain 

[Td> + 1 + K,KC i J r, (p) + Kt^aik (p) Y„ (p) -- 

-- KJC*Y« (p) + KJt (p)       (»'=1,2,..., a). (6.37) 

To prevent loss of generality, the coupling coefficient is written as a function 

of the operator p.    Dividing the i-th equation by Kci and putting pJ- = m, we find 

In, (T,p+ l) + K,] Y,(p)+miKl 2 a(J (p)Yk (p) = 

= KiYM(p)+mtJ<ift(P)      (1=1,2, .... n). (6.38) 

Let us first consider the case ai4(p)=a« = const.    If the controller gains 
are sufficiently large,  i.e., Kct-+oo and m,->-0, we see from (6.38) that in the 
limit the i-th controlled variable depends only on its reference value Y,,t,(p) 
and is independent of all other controlled variables.    Increasing the gain 
of each subsystem, we uncouple the various controlled variables in the 

sense that, to accuracy of mi = -^-, the controlled variables no longer 

interact with one another; we have thus achieved noninteraction to accuracy 
mi.    This conclusion, however,  does not mean much if not supplemented 
by information on system stability. 
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If all rm are of the same order of smallness,  the characteristic equation 

is written as 
m(.l + T,p) + Ki m/C,a12 ... mK,at„ 

Kima2l m(T2p+\) + K2    ... mK&m _0. (6.39) 

mK„a„ rnK„am ... m (1 -f Tnp)-\-K„ 

It is expanded to the form 

m"Fn{P) + m"-iFn-dP)+ ... +F0(j)=0. 

where the subscript of F indicates the degree of the polynomial.    It follows 
from Chapter Three that the system is stable as m-»-0 if and only if the 
degenerate equation F0(p) = 0 and the auxiliary equation (of the first kind in 
this case) each satisfy the respective stability conditions.    Here it clearly 
suffices to test for stability the auxiliary equation only.    After simple 
manipulations it takes the form 

]fi[(tf,+ 7>») = 0. (6.40) 

This is a product of n factors each characterizing an independent 
damped process for the corresponding controlled variable.    The system 
is thus stable. 

The roots of the auxiliary equation are 

B--JSL. (6.41) 
Pi—       mTi ' V ' 

which shows that high gain ensures high system stability,  i.e., high-speed 
response, as well as high steady-state accuracy and noninteraction. 
Moreover, high gain "suppresses" the external disturbance ft.    In this 
case noninteraction is supplemented by excellent dynamic properties of 
the system as a whole. 

The results also admit of a different interpretation.    Suppose that we 
are interested in improving the dynamic properties of the system.    To 
this end the subsystem gains are increased.    Since F0{p) in this case is 
a certain constant, the system dynamics at sufficiently small m (large Kci) 
is completely determined by the properties of the auxiliary equation.    It 
is clear from the expression for the roots of the auxiliary equation 
(relation (6.41)) that the smaller the parameter m{ the faster is the transient 
response of the system,  i.e.,  system dynamics is improved by raising 
the subsystem gains.   At the same time uncoupling is achieved and the 
process is separated into n independent (noninteracting) processes. 

Noninteraction is thus derived as a dynamic property of the system 
at high gain,  regardless of whether we are concerned with this particular 
aspect or not. 

Case   2.    The plant and the controller are described by first-order 
differential equations in each controlled variable. 

156 



Kef 
^fö*- 

t*TiP 1+TiP y. 
> > 

Ti 

-ä£i- 

FIGURE 6.8.    The i-th control loop with a 
controller described by a first -order equation. 

Figure 6.8 is the structural block 
diagram of this case.    The plant and 
the controller are represented by- 
aperiodic elements with time constants 
7",- and T't and gains Kt and /Cc(.    Assuming 
zero initial conditions, we write the 
following set of equations in Laplace 
transforms for this system: 

[(1 + Ttp)(1 + Tip) + KiK* t] Y, {p)+Ki (1 + r,p) 2 aH(p)Ylt(P)= 
k = \ 

=w*ty«t (p)+xto+TiP)f,(/»)   c=».2- • • •• »)• (6.42) 

Dividing each equation in (6.42) by X"ciand putting •jr— = ml, we obtain 

[m, (1 + TiP){\ + Tip) + Kt\Yt(p)+mtK,(\ + T',p) 2 aib<j>)Yk(p)= 

^KiYK<l(p) + mKi(l + Tip)f1(p)       (/=1, 2 a). (6.43) 

Here we also take a,s(p) = alft (0). For mi-*-0 the degenerate part of the 
set separates into n independent zero-order equations, i.e., structurally 
the control system is representable by n noninteracting subsystems. 

To find the In roots which recede to infinity as m,--»-0, we have to 
test the auxiliary equation for stability.    If all the nii are of the same 
order of smallness,  the characteristic equation is finally written in the form 

m"F*n (P) + m-lFu.t (p)+ ■ ■ ■ +F0(P) = 0, (6.44) 

where the subscripts of F indicate the degree of the corresponding 
polynomial F(p). 

It is clear from (6.44) that we will be dealing with an auxiliary equation 
of the second kind in this case.    The auxiliary equation is constructed 
following the procedure of Chapter Three.   After some manipulations, 
we write it in the form 

U[^ + Ti9)(l + T'tq) + Ki] = 0. (6.45) 

Since 7\-,   T't, and Ki are always positive real numbers,  equation (6.45) 
satisfies the stability conditions.    From (6.45) we also see that the 
transient response of the system consists of n mutually independent 
transients corresponding to independent, noninteracting variation of 
the n controlled variables. 

In this more complex case, noninteraction of the individual controlled 
variables is attained by increasing the subsystem gains. 

As in Case 1 we have assumed that Kd are all of the same order of 
magnitude and can be put equal to one another.    This is an inconsequential 
restriction,  since the controller gains can be adjusted accordingly.    If, 
however,  the controller gains are different, they are all represented by 
a single combined gain factor (as in Chapter Three).    The rest of the 
analysis proceeds along the same lines as before, i.e., an auxiliary 
equation is drawn up, its coefficients incorporating the proportionality 
coefficients introduced, and is tested for stability. 
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Without going into the detailed manipulations, we note that the preceding 
conclusion concerning noninteraction attained by increasing the subsystem 
gains remain valid in systems where the controllers are structurally 
representable by integrating elements /39/.    For noninteraction, however, 
there is no need to impose any restrictions on the time constants of the 
integrating elements (servomotors), as is done,  e.g.,  in /52/. 

Case   3.   Noninteraction with ideal derivatives. 
Consider the general case, when the plant is described by an i-th 

order differential equation in each controlled variable,  and the unstabilized 
controller by a /-th order differential equation. 

High-gain stability is ensured by introducing n-2 derivatives (n=i+j) 
into each subsystem according to the rules derived in Chapters Three 
and Four. 

Let Di(p) be the self-operator of the plant,  Mt(p) the self-operator of 
the controller, Kit the controller gain and Kt the plant gain, all in relation 
to the/-th controlled variable. 

We proceed to derive a set of equations describing the control processes 
in this system. 

The plant equation for the first controlled variable is 

Dx(p) *, = ff,(A';-jSV0+/i)- (6.46) 

The controller equation: 

M1(p)Xl = Kci[XiKf-Xi-(aiopn'-'>+anpn'-3 + . ■ ■ +fli»-i/>)X,]. (6.47) 

(6.48) 

Inserting for X[ in (6.46) its expression from (6.47) and proceeding to 
derive equations for the other controlled variables, we finally obtain 

DiWMM + KtKdfaop*-* +a„/>"'-3 + ... 

( = 2 

^KciKirirt + KMtöh, 

{Dn(p)Mn(p) + KnKcMn,pn"^+an,p
n'>-l+ ... 

...+«„,„_,*)+ *„*,] Yn + KnMn (p) 2 a.fY, = 

= KncKnYmcf + KnMn(p)\n, 

where 
nl=al + \iv 

«« = «/. + »»«• 
For sufficiently large Kct the equations in (6.48) degenerate to mutually 

independent equations.    Thus, for Kd-*oo, the t'-th equation takes the form 

Ki[aloP"r2+anpnr3
+ ... +aUn_lP+Kl]Yl = K,YKl. (6.49) 

The left-hand side of this degenerate equation is a product of factors 
which constitute the left-hand sides of the degenerate equations of the 
individual controlled variables. 
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To establish stability for m-*0, it remains to test the auxiliary equation 
of second kind.    It is also independent of the coupling coefficients a«. 

We thus come to the conclusion that if ideal controllers are used in 
systems which remain structurally stable at arbitrarily high gain, 
noninteraction is a dynamic property of the system; the degree of non- 
interaction increases as the corresponding gain is increased.   As regards 
the quality of  control, we see from (6.49) that the degenerate equation, 
which determines quality,  is entirely dependent on the stabilizer parameters. 
The latter can obviously be chosen so as to ensure required quality. 

In what follows we will consider systems where noninteraction cannot 
be attained by increase of gain alone: the structures should be additionally 
modified to ensure noninteraction. 

§ 6.4.    ISOCHRONOUS SYSTEMS 

Isochronous systems use an isochronous stabilizer.    This is an elastic 
feedback element having the transfer function 

*in (/>) 

: (P)   _       */> 
1 + T/,- (6.50) 

This transfer function is characteristic of mechanical isochronous 
stabilizers (with negligible piston mass), as well as stabilizing transformers, 
AC elements, and other control elements widely used in practice. 

Kc ■Hi 

y..,i 
1+Tcip 1+TiP 

'e^2H2^T> 

< -1 

■£.    > 
Yi 

/f*i 

JiP 

FIGURE 6.9.   The i-th control loop with an iso- 
chronous controller. 

Figure 6.9 is a block diagram of an isochronous system: the elastic feed- 
back loop embraces the controller, which is structurally represented as a 
single aperiodic element.    Using the nomenclature of Figure 6.9, we write 

{(' + TlP) [(1 + Telp) (1 -f t,/>) + K^p\ +*,*„(!+ xlP)) Yl + 

+ *, [(1 + 7»(1 +tlp) + K*itlp\ £ aur, = 
1 = 2 

= KclK, (1 +tlP) KIret+tf, [(1 +xlP) (1 + 7» + KtfiiP\ ft. 

1(1 + TnP) [(1 + TclP)(\ + x„P)+Kcnt„p] + KIK'CM(\ +i.'p)\Ym + 

+ K„\(\+Tc„P)(\+xnP) + Kc„x„P\'Lo.niYl = 

= KcnK„0 + rnP)yttxl + K„ |(1 +t./>)(l + TcnP) + Kcnxnp]f„. 

(6.51) 
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It is clear from Figure 6.9 that the subsystem gains can be increased 
indefinitely by increasing the corresponding controller gains. 

The system as a whole is stable if the degenerate equation and the 
auxiliary equation each satisfy the stability conditions. 

To explore the possibility of noninteraction, we divide all the equations 

in (6.51) by Ka.    Putting ^— — m.i and assuming all m< to be of the same 

order of smallness,  we draw up an auxiliary equation (it turns out to be an 
equation of the first kind in this case). 

After simple manipulations, we obtain the auxiliary equation in the form 

n(i+r,(?)=o. (6.52) 

It always satisfies the stability criteria and is independent of the coupling 
coefficients. 

Let us now consider the degenerate equations.    Dividing (6.51) by Kci and 

putting  m = -~K^= 0, we obtain the following set of degenerate equations 

[(1 + TlP) xlP + Ki (1 + t,/»)l K, + fop 2 o„K, = 

= K1(\+x1p)YlK,+ Kix1pfv 

[(1 + T2p)x2p + K2(\ + x2p)\ Y2 + K2x2p 2 <htYt = 

= K2 (1 + -hp) Y2 K, + K2r2Ph 

[(1 + T„p)%np + Kn(\ + inP)} Yn + K„r„p S a.Xi = 

(6.53) 

= K„V+inP)Y»<c<+Knx„pfn. 

Each equation in (6.53) contains terms which account for the interaction 
of the various controlled variables. Noninteraction thus cannot be ensured 
by simple increase of the gain alone. 

To ensure noninteraction, the structure is modified as follows.    The 
sum of all variables, with the exception of the variable corresponding to 
the particular controller,  is additionally delivered to the input of the 
isochronous stabilizer of each controller.    The system behavior is thus 
described by the following equations. 

First-variable plant equation (see Figure 6.9): 

(\ + T,P)r1 = K1[y'i + ^aur+f^. (6.54) 

Controller equation 

(I + T>)K; = KC] Y      — Y T|/>     K'      V     Xp—a   V (6.55) 
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Inserting for Y[ in (6.54) its expression from (6.55) we find 

1(1 + 7»Id + Telp)(1 +xlp) + K*i1p]+K,f(cl(1 + T,/»)} Yl- 

- Kt [0 + Telp) (l+tlp) + Kci'iPl 2 VuYt + KiKtM So,,K,« 
i=2 (=2 

= Kiffci 0 +*i/») ^ircr+AT,/, [(1 + Tcip)(l +xj>) + Kelxlpl. (6.56) 

Similar equations are obtained for the other variables.    For the fe-th 
variable we thus have 

[Q + Ttp)l(l + Tzkp)(\+xtp) + Kckxkp\ + KkKzk(\+xkp)\ Y*- 

- Kk [(1 + Tctp) (1 + xkP) + KckxkP] S akiY, + 
1=1 

+ KkK^>p I] aitr, = KkKck (1 + r„p) Yk Kf+ 

+ kkft[(\+Tcl!p)(l+xkp) + Kckrkp\. (6.57) 

Dividing each equation in (6.57) by the appropriate Kci and taking m,= -^— 

to be sufficiently small, we obtain a set of independent degenerate equations 
for each controlled variable.    Thus, for the A-th controlled variable, 

[(1 + T„p) xkp + Kk(l+ xkp)\ Yk = Kk(\+ xkp) Ykrcf + Kkxkpfk. (6.58) 

This equation describes an independent, noninteracting process in the 
A-th control loop.    This process is independent of the other controlled 
variables. 

Comparison with the results of the previous sections shows that, 
whereas in the preceding structures increase of gain ensured noninteraction 
and simultaneous rejection of external disturbances, noninteraction in 
a system representable by equation (6.58) is not accompanied by disturbance 
rejection.    This important property will be investigated in what follows 
during a detailed analysis of noninteraction and invariance. 

§ 6. 5.    NONINTERACTION IN THE GENERAL CASE 

Let us consider noninteraction in the general case of a system with 
n interacting variables which remains stable as the individual gains are 
increased indefinitely.    We assume that each control loop is stabilized 

by a device with a transfer function   "' VI which encloses part of the 
Fml (p) r 

controller with the self-operator M,-„ (Figure 6.10). 
Let Di(p) be the self-operator of the plant in respect to the i-th controlled 

variable, Aff „ (p) the self-operator of the stabilized section, M; deg (p) the self- 
operator of the unstabilized section, Ki<iH the gain of the unstabilized section. 

It is easily seen that in this case, as in § 6. 3, gain alone does not 
ensure noninteraction. We do not prove this proposition, as it partly 
follows from the results of § 6. 3, where the stabilizer transfer function 

is a particular case of the function \." f\ ■ 
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Let a sum of disturbances 2        atkYn be additionally delivered to 
*=1,2 / a 

the input of each stabilizer.    The system is thus described by 

\Dt (P) M, deg 0») \M, . (p) Fmi (p) + Kt « Fni (p)\ + 

+ Kt „ Ki degKiFml (p)) Y, = KtKt st Af, ieiFm, (p) Yllc!— 

-KtMliHK, KFia(p)$allirl,+ 

+ K,Mlin(p)lMt n (p)Fmi(P) + Kl ./
7.,(p)l2««J'* + 

+ KM dCg (P) [M, . 0») f„, (p) + AT, « /\, (P)\ h, 

where n= 1, 2,..., n. 

(6.59) 

Jhd *u Hi 

»t «tW      Mt „ ^ Di(p) 

-+&+-   > H2^-   > 

<   =d 

1<W 

> 

K*t 

n 

FIGURE 6.10.   Illustrating the derivation of noninteraction in 
the general case of a lagless plant. 

As we have already indicated, the stabilizer transfer function and the 
stabilizer connections are chosen so that the system remains stable 
despite indefinite increase in gain.   A",s, may therefore be increased 
indefinitely in each subsystem.    The entire system will be stable if the 
degenerate and the auxiliary equation each satisfy the corresponding 
stability criteria. 

Let Ktst be sufficiently large.    Dividing each equation in (6.59) by Kt >, 

we find that for sufficiently small m, — -^— the system separates into 

n independent equations,  each describing one controlled variable only. 
The stabilizer input in this case is thus the sum of all extraneous 

controlled variables, which implies noninteraction for K « ■+». 
It is clear from the preceding that if the noninteraction conditions 

are satisfied,  each subsystem can be selected and investigated independently 
with the aid of the well-known methods of the theory of single-variable 
control systems. 

It should be emphasized that the accuracy of the results is conditioned 
by the order of smallness of m. The smaller the parameter m, i.e., the 
higher the gain Ka, the more accurate are the results. 

In practice,  if all the other system parameters are known,  Kia   is 
readily chosen by the methods described in /39/. 
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The analysis of this section leads to tne ioilowing conclusions. 
(a) Multivariable control systems which retain their stability at any 

(including arbitrarily large) gain can be reduced to noninteracting systems. 
In the general case noninteraction is attained by increasing the correspond- 
ing gain Kin and simultaneously delivering to the stabilizer input the sum 
of disturbances from all the extraneous variables with proportionality 
coefficients aik. 

(b) The method» of the theory of single-variable control systems are 
fully applicable to the design of noninteracting multivariable systems 
and to the choice of system parameters. 

§ 6. 6.   NONINTERACTION IN SYSTEMS WITH LAGS 

In our discussion of stability of lagged systems the input variable of the 
time-lag element was assumed to be zero during the time from t= —x to 
/= 0.    This assumption is valid,  since in linear systems (with which we 
are concerned) stability is independent of the initial conditions.    However, 
in the general case, zero initial conditions are inadmissible in systems 
with lags.    The system equations should therefore be written for nonzero 
initial conditions. 

We consider the following cases:   (a) high-gain stability is attained 
by introducing ideal derivatives into the systems, and (b) high-gain stability 
is attained by introducing real derivatives. 

?)*■ > > _ > ))* .£. 
a 

* 

FIGURE 6.11.   Illustrating noninteraction in the general 
case of a lagged plant. 

Let us derive the equation of the i-th subsystem, for case (a).    Figure 6.11 
is a block diagram of this case. 

The plant equation ignoring time lag is 

D,(p)ri=Kl{x,+2,al>Y> + fl]- (6.60) 

The equation of the lag element 

K; = K,-(*-T). (6.61) 

The controller equation 

Rt(p)xl = Kcl{Kcll-yi(aoPn-* + axP"-3+ ■■■ + an.3p+\)], (6.62) 
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where 

a0p" -2 + alP" ~3 + ... + a„ _3p = F (/>), 

and n=D + R is the overall order of the differential equation describing 
processes in this subsystem. 

Laplace-transforming equations (6.60), (6.61), and (6.62), we obtain 
the plant equation 

Di(p)y^f<'i[xl(p)+-Elaihyk(p) + fl(p)] + Dln[P,xl(0), r;(0)], (6.63) 

the lag equation 

o 
Y'l(p) = e-'ipyl(p)-+ fVle-'"dt = e-x'!'yi(p) + ^(p), (6.64) 

-T/ 

o 
where i|>. (/>) =  \ x'.fi-f'dt accounts for the initial conditions during the time 

-T 

from / = — T to t= 0, 
and the controller equation 

R,(p)xi(p) = Kcl\Y«:n-Yl(p)(a0p'<-* + axp''-s+ ... 

... +an-ip+\)\ + R„,\P, K,(0), x,'(0)]. (6.65) 

In (6.64) and (6.65), Dni and Rni are contributed by the initial conditions 
for Yi andXj,  respectively.    Solving equations (6.63), (6.64), and (6.65) 
for the Laplace-transform of the controlled parameter,  Yl(p), we find 

lD,(p)R,(p)e"+KtKcl(atp'-*+ulp>-»+...+al,_lp+\)iyl(p)+ 

+ KtR, (p) 2 o„K» (p) e» = {KtKc ,Yt ref + K® (p) (aoP"~> + 

+ a^»-3+ ... -f \) + KiR„, [P, y,(0), y,'(0)...| + 

+ KiRl(p)fl(p) + Ri(p)Di![P, K,(0), KJ(0)...]}«". (6.66) 

Dividing the two sides of (6.66) by Kci and taking Kd to be sufficiently large, 
we find • 

mDi(p)Rl(p)ev> + Kl{a0p"-i+alp"-*+ ... + \)Yl(p) + 

+ mKiR, (p) 2 o-nXk (P) exp = {K,YlK, + tnK& (a0p»-> + 
+ aip'-3+ ... + \)+mKiR», [px, (0), x',(0)...] + 

+ mK,Rt (p) U (p) + mRl (p) Dm [P, Yt (0), Y\ (0)... ]} e». (6.67) 

First let us consider the effect of nonzero initial conditions.    We assume 
that during the time from - T to 0 the function Yi and its derivatives have 
finite values; we moreover assume that at the time  t= 0 the function x(Q) 
and its derivatives are also finite.    Equation (6.67) then shows that as Kd 
increases, the effect on the transient response of the initial values of  Y 
and x and of their derivatives diminishes,  dropping to zero in the limit. 
However, a distinctive feature of this stabilization technique (introduction 
of ideal derivatives to the system input), as is seen from (6.67),  is that 
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in the limit, when m-+0, the equation becomes lagless, the leading term 
vanishes, and instability sets in.    Introduction of ideal derivatives to the 
system input is thus inadmissible for purposes of attaining high-gain 
noninteraction. 

This conclusion is fairly obvious without a formal proof.    Introduction 
of ideal derivatives to the system input is equivalent to stabilizing the 
entire system with a stabilizer 

a0p"-* + aip"-3 + ... +a„_3jt). 

This system is unstable as /Cc,->oo,  since the stabilizer embraces the lag 
element as well. 

It is significant, however,  that the initial conditions, as long as they 
are finite,  do not affect the fundamental properties of the system.    In 
what follows we therefore omit the particular initial conditions. 

Let us now consider the case when the ideal derivative is so introduced 
that the system remains stable in the limit despite an indefinite increase 
in the gain of the stabilized section. 

For the /-th subsystem we have 

[Dt(p)Nip)Ql(p)e^p+Kl u Di(p)N1(p)Fnl(p)ex'p+Kim ]Yt + 

+ Kl{Nl(p)Qi(p) + Ki .WjWF.^MSa,/,» 

= W, (P) Qi (P) + KiKt , Nt (P) F« (P)\ Yl n*+ 
+ [N, (P) Qt (P) + K, « N, (p)Fni (/>)] f„ (6.68) 

where Kt ,„, = KiKNiKt M . 
The order of the highest ideal derivative entering the expression for 

F„i(p) is chosen so as to ensure stability with arbitrarily large Kin . 
We divide (6.68) by Kt „ and put Kt „ ->oo.    The degenerate equation 

takes the form 

[D,(p)N,(P)Fnl(P)e^ + K> „ ]Y,+ 
+KlNl(p)Fnl(p)^altVt = Klm ylx!+Ml(p)Fni(p)fl. (6.69) 

It is clear from (6.69) that noninteraction cannot be ensured simply 
by increasing the gain KiK ,  since the degenerate equation contains a term' 

Ni(p)Fnl(p) S aikYk, 
* = I, 2 i-1, Z+l, n 

and the process is consequently dependent on the contribution from all the 
other controlled variables. 

Noninteraction is attained by proceeding along the same lines as with 
lagless systems (6.2).    Signals of the form 

2    «»r> (6-7°) 
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are delivered to the stabilizer inputs.    The set of equations for the first 
subsystem is written as 

[Dl(p)Ni(p)Ql(p)e^+K1 „ DlXp)Nl(p)F1(p)e*" + Klm\rl + 

+ lN,(p)QlU>) + KluN1{P)F.Ap)\2<iurk- 
1 = 2 

-K!llN1(p)F„,(p)-Zalkyi!== 

= Ki M (/>) Q, (/») + AT, «AT, (/7) Fnl (p)\ K, ref+ 

+ M(/»)Qi(/>) + Ki «N1(p)Fnl(p)\fl. (6.71) 

Similar expressions are obtained for the other subsystems: it is only 
necessary to substitute the appropriate subscript for 1 and to omit it from 

n 

the sum 2 • 
1=2 

Dividing (6.71) by A', „ and putting AT, „ -+oo, we obtain the degenerate 
equation 

[O, (p) N, (p) Fnl (p) e-^+Kx deg IV, = 
= K[Nl(p)Fnl(p)Y,af+Nl(p)FM(p)iy (6.72) 

This equation is independent of aihxh. 
We thus conclude that introduction of an additional signal (6.70) to the 

stabilizer inputs in conjunction with an increase in the gain Kiit ensures 
noninteraction of the individual subsystems in a multivariable control 
system with lag elements.    It is of course implied that the conditions of 
infinite-gain stability are satisfied. 

In conclusion let us consider a case when stability at infinite gain K, „ 
is ensured by real stabilizers in the system. 

The transfer function of the stabilizer in the i-th subsystem is 

pml (P) 

Acting along the same lines as in the preceding we readily show that non- 
interaction can be attained by indefinitely increasing the gain of the stabilized 

n 

section in the ,-th subsystem if   an additional signal ^] «;*>'* is delivered 

to the stabilizer input (the subscript k takes on all the"values except I). 
The noninteraction criteria of the previous sections are thus extended to 
systems with lag elements as well.   Note that noninteraction does not 
ensure automatic rejection of external disturbances in this case either. 

§ 6. 7.    INVARIANCE PRINCIPLE 

In invariant control systems the generalized coordinate of the system, 
in particular the controlled variable,  is independent of the external 
disturbances.    They are therefore also called sy s te m s   with   rejection 
of   external   disturbances. 
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In multivariable control systems the problem of invariance is substantially 
complicated by interaction between the various controlled variables, which 
is superimposed on the external disturbances.    There is, however, a 
fundamental difference between the effect of external disturbances and the 
effect of coupling in the system: external disturbances do not affect the 
stability of the system as a whole,  whereas the coupling coefficients, 
or in the general case the coupling operators, have a substantial influence 
on system stability. 

To elucidate the problem of invariance, we first consider a three- 
variable system and then extend the results to the general case. 

1.   A three-variable system 

Consider a system with controlled variables interacting through the 
plant.    Analysis of combined control systems has shown that the external 
disturbance,  if appropriately channeled into the system,  can make the 
controlled variable independent of external disturbances.    The feasibility 
of this rejection procedure follows,  say, from the Poncelet principle of 
load control.    It is therefore interesting to consider this problem in 
application to control systems operating on the Watt — Polzunov principle 
(control by deviation). 

The equation for the controlled variable X, in this case can be derived 
from (5.22) putting 

ß/* = 0,   e„, = 0 and emi = l   (l±k; t=\, 2, 3). (6.73) 

Making use of (6.73), we obtain from (5.22) 
3 3 

J'^iSHr^^.i.^. + iSl-D'^uK^«!^;,,    (6.74) 

where 

Here 

(Cn + KQ,di2)an      a12-j-/(cih2 fe + Kc 2d2i) a23 

(c33 + KQ3d33)a3,    (c33 -f- Kc 3^33) a32     a33Kc3b33 

^22 + ^2*22 (C33 + Kc 31*33) a32 I 

('22 + Kc 2<*22> "23        «33 + Kc 3*33 I 

(cll+#c l<f|l)<*ll      (C»3 + K03^33)032  I 
(cll +fc l^ll) "13        <«33 + fc 3*33 | 

(Cll + KC l<fn)als        «22 + ^2*22 I 
(«n + Kc idn) a13    (c,j -f- Kc *dn) a23 | 

6,i = JW,., + /W„-. 

An- 

■"13 — 

(6.75) 

(6.76) 

(6.77) 
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To reject all the external disturbances,  the coefficient of U should be 
made equal to zero,  i.e., 

(-\)'+lAn[Kcldu + Nu\ = 0   for   « = 1,2,3. 

This coefficient is made up of two factors: 

Aik    and   [Kcldu + Nu] = 0. (6.78) 

Consider the first factor,   Aih.    It is clear from (6.74) that the condition 
Aih = 0 is equivalent to rejection of the entire control system,  since elimina- 
tion of the external disturbances simultaneously eliminates all the reference 
values  y,cn and we no longer have a control   system.    Furthermore,  if 
all Aih are zero,  the denominator vanishes and we arrive at the identity 0 = 0. 

Here lies the main error of G. V.  Shchipanov who proposed control by 
deviation for the realization of the fundamentally sound idea of disturbance 
rejection that he had developed.    It is not only that a zero identity is 
obtained: a more significant fallacy is that by rejecting the external distur- 
bance in this way we simultaneously eliminate the reference values and thus 
destroy our control system.    Moreover,  in deviation control systems, 
on passing to the limit  Aik= 0, we must investigate the stability under 
arbitrarily small deviation from equality,  i.e.,  test the system for coarse- 
ness in the sense of A.A. Andronov. 

Now consider the factor (Kadn + Nn).    Inserting for du and A/« their 
expressions from (6.77), we find 

Kc idu + Nu = KiQl \KC fnl + RtFmi\ = 0, 

or 

(6.79) 

Let us elucidate the physical meaning of condition (6.79).    It is easily 
seen that (6.79) calls for the introduction of ideal derivatives.    Indeed, 
Kd is a constant positive quantity, R{ is the controller self-operator.   Fmi, 
the self-operator of the stabilizer, is thus clearly a constant number, 
whereas the stabilizer numerator Fnt must be precisely equal to the 
controller self-operator Ri(p).    We conclude that in this case  control 
by   deviation   in   principle   cannot   ensure   complete 
(perfect)   rejection   of   external   disturbances.    Disturbance 
rejection is possible only to an accuracy of some e,  and the equation should 
be investigated for coarseness. 

Various techniques ensuring invariance have been proposed in the 
theory and practice of automatic control /14, 26, 27, 29, 51, 56/.    We do 
not intend to discuss each and every of these methods; only the most typical 
cases will be considered, with particular reference to their advantages 
and, possibly,  shortcomings.    Note that condition (6.79) is not the only 
one that ensures invariance; moreover,  this is not the best policy for 
obtaining e-invariance of a control system. 

The point is, that a stabilizer is incorporated in the system to ensure 
stability and provide certain dynamic properties.    If the stabilizer is 
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chosen on the basis of condition (6.79),  it is by no means clear that it will 
meet the required performance characteristics as far as system dynamics 
is concerned.    A better solution is to tackle the problem of s-variance 
simultaneously   with the problem of stability and system performance. 

We have considered the particular case of a three-variable system, but 
the results are obviously valid in the general case of n controlled variables too. 

2.   Application of local positive feedback to ensure invariance 

We will now consider some instances of invariance ensured by local 
positive feedback.    Our interest in these methods stems not from their 
practical significance but from the fact that they provide an excellent 
opportunity to warn the reader against various fallacies and erroneous 
conclusions that may lead to undesirable results. 

Figure 6.12 is a block diagram of the system analyzed in /29/.    Using 
the nomenclature of Figure 6.12,  we write 

z =—y, 

-*). 

x = (a13y + {(p))-—. 

(6.80) 

Solving (6.80) for x, we obtain 

alla13 (a23a32 — ffl22a23) ~f" alZaZz\ X  — al3a33M rcf + (a23ß32 — aWaZl) f (/>)• (6.81) 

This is a single-variable control system, and the invariance conditions 
can be determined without considering the general case of a multivariable 
system.    The particular results,  as always, can be easily generalized to 
the case of n controlled variables. 

<U 

,1    .1 

"« 

f(p) 

<&*ij 

FIGURE 6.12.   Illustrating the conditions of disturbance rejection. 

We see from (6.81) that the controlled variable x is independent of 
external disturbances if 

#23^32 — #22^33 = ^' (6.82) 
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Let the parameters be chosen so that identity (6.82) is satisfied.    It is 
readily seen that the system is noncoarse for perfect invariance, whereas 
for e-invariance it is realizable only if certain additional conditions are 
imposed.    Indeed, the degree of the polynomial 011013(023032 — 022033) is always 
higher than the degree of the polynomial 013033.    Under these conditions, 
an arbitrarily small departure from identity gives rise to roots which 
recede to infinity; the number of these roots is determined by the difference 
in the degrees of the polynomials 

aUaa («23*32 — «22*33)     and    «13033. 

If the new terms introduced by departure from identity have a minus sign, 
the system is unstable irrespective of this difference.    Perfect invariance 
is thus unfeasible,  since, in view of the possible appearance of terms 
with negative coefficients,  the system is not coarse in the sense of 
A.A. Andronov. 

Let us now consider the case of e-invariance.    The question can be 
discussed at all only if 

023*32 — «22*33 > 0. (6.83) 

However, if (6.83) is satisfied and also 

«23*32 — «22*33 ^- e> 

the system is realizable only if the difference in the degrees of 0110,3(023032 — 022033) 
and 013033 is not greater than two and the degenerate equation 

«13*33 = 0 (6.84) 

meets the stability criteria.    Furthermore, the additional requirements 
described in Chapter Three should also be satisfied.    In other words, the 
realizability problem reduces to the design of a structure which remains 
stable at infinite gain. 

3.    Inv.ariance via feedback 

Let us consider another method, which ensures invariance with the 
aid of internal feedback /20/. 

Figure 6.13 is a block diagram of a control system,where invariance 
in relation to the disturbance e(t) is attained by introducing local feedback 
with appropriately chosen transfer functions.    The exact character of the 
local feedback will be decided at a later stage.    Meanwhile,  taking all the 
feedbacks with the plus sign and using the nomenclature of Figure 6.13, 
we obtain the following set of operator equations: 

Ux(p) = Z,(p) X(p) + Z,(p) U,(p) + Z3(p) U2(p)+Q(p), (6.85) 
Ui(P)=W,(p)Ul(p), (6.8 6) 
U3(P)= W,(p)U2(p), (6.87) 
Ui(p) = Ui(p)-\-e(p), (6.88) 
X(p)=Wi(p)Ui{p), (6.89) 
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where X(p) is the Laplace transform of the controlled variable, e(p) the 
transform of the disturbance, Wi, W2, W3, Z2, and Z3 are the transfer functions 
of the system elements and the local feedbacks.    The system is designed 
according to the Watt —Polzunov principle, and so 2,= —1. 

e(t) 

gft) u     
*&)■*& W~r- 

FIGURE 6.13.   Illustrating the derivation of disturbance rejection 
conditions with the aid of positive feedback. 

Solving equations (6.85)—(6.89) for the transform of the controlled 
variable X(p), we find 

y U7, (p) W2 (p) W3 (p) Q (p) + W3 (p) [1 - W, (p) Z, (p)] e (p) 
AW— [\-w, (p) z3 (p)]+w, (p) w2 (p) w3 (p) - w, (p) w2 (p) z% (p) (6.90) 

In order for the controlled variable x(t) to be independent of the distur- 
bance e(t), the coefficient of e(p) in (6.90) should be equal to zero,  i.e., 

1-^(^23(^ = 0, (6.91) 

Z»(P)' W, (p) 
(6.92) 

If the transfer functions are represented as rational-fractional functions 
of the operator p, then putting 

Z3(P)-- Fm»(p) 
and   Wt(p)-- KAP) 

DiiP) 
(6.93) 

we find 

F„AP) _ DAP) 
FmsiP) ~ Kl{p) 

(6.94) 

Note that a similar condition was derived in the preceding subsection, 
where invariance was achieved via local positive feedback.    The feedback 
with the transfer function Z3 should apparently be positive in this case, 
too; moreover, for the real components which make up the basic elements 
of control systems, the degree of the denominator Dt(p)is greater than the 
degree of the numerator  Ki(p).  In most cases, Ki(p)is simply the gain, 
i.e., a constant positive number.    We thus again arrive at the requirement 
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of local positive feedback with ideal derivatives.    In other words, nothing 
new has been hitherto derived in addition to what we considered in § 6.4. 

Let us now consider the stability of this system and test it for coarseness 
in the sense of Andronov.    We put for the transfer functions 

(6.95) 

The characteristic equation needed for stability analysis is obtained 
by putting the denominator in the right-hand side of (6.90) equal to zero. 
Making use of (6.95), we write for the characteristic equation 

h       Fm(P)   K,(p)]  ,    K,(p)K,(p)Kt(p)       Ki(p)KAP)   Fn*(p)     n 
L Fm3 (P)   O. (P) J "•" D, (P) D2 (p) D3 (p)        D, (p) D2 (p)  Fm (p) ~U 

DAp}D2{p)DAp)FmAp)[l--^%%} + 

+ Kt (P) K2 (P) K3 (p) Fm2 (p) - Kx U>) Kt (P) D3 (p) F„2(p) = 0. (6.96) 

It is clear that the system degenerates whenever condition (6.94) is 
satisfied,  i. e.,  if 

i      FmiP)   *,(/>)      n 

Pm> (P)   D, (p) ~ u< 

since the degree of the polynomial before the expression in brackets 

i   .     FmU>)    K,(p) 
Fms(P)   D,(p) 

is greater than the degree of the other polynomials in (6.96). 
Let condition (6.94) be satisfied exactly.    The degenerate equation is 

- K, (p) Ki (p) A, (p) /=■„ (p) + Ki (P) K2 (p) K3 (p) Fm2(p) = Q. (6.97) 

It is clear from (6.97) that if the transfer function Z2 corresponds to 
positive local feedback (i.e.,  the signs are all as in equation (6.97)), the 
system is unstable.    This conclusion is obtained from the following con- 
siderations.    The first term in (6.97) is of higher degree than the second 
term.    By results of Chapter Three the coefficients of the leading terms 
in the complete and the degenerate equation should have the same sign. 
Hence follows our first conclusion that the local feedback with the transfer 
function Z2 is negative.    The degenerate characteristic equation thus takes 
the form 

K1(P)K1(p)D3(p)Fn,(p) + Ki(P)K2(p)K3(p)Fm2(P) = 0. (6.98) 

The conclusion concerning the feedback ratio Z2 has been previously 
reported in /20/ and it is by no means new.    We give it here only for the 
sake of completeness and consistency. • Let us further assume that the 
parameters of the degenerate equation are so chosen that they satisfy 
the stability conditions.    It is readily understood,  however,  that in the 
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case of perfect invariance the resulting system is not coarse in Andronov's 
sense and it is thus inadequate. 

Indeed,  suppose that the system departs from condition (6.94) by an 
infinitesimally small quantity.    This gives rise to a small parameter which 
obviously may be either positive or negative.   A negative parameter 
generates at least one right-half-plane root.    In the case of. perfect 
invariance we thus end up with a noncoarse, i.e., unrealizable,  system. 

It now remains to consider invariance in the case 

Fms (P) Ki (p) 

The characteristic equation is 

mFN2(p) + Fm(p) = 0, (6.100) 

where 

Fm (p) = D, (p) D2 (p) D3 (p) Fmi (p), 
Fm (P) = Kt (p) K2 (p) 03 (P) Fn2 (/>) + ATi (p) K2(p) K3 (p) Fm2 (p). 

This system is realizable if it is structurally stable at infinite gain. 
In other words, we have proved that perfect invariance is unattainable in 
this way, while e-invariance can be achieved only if the structure of the 
system has infinite-gain stability and the necessary and sufficient conditions 
of Chapter Three are satisfied. 

We will not go into the corresponding results for multivariable control 
systems, since this would involve repetition of our previous discussion 
(see Chapter Three) of systems with infinite-gain stability.    In conclusion 
of this section we will consider the properties of multivariable control 
systems based on the Watt —Polzunov principle, with the controlled 
variables interacting through the plant.    It will be clear from what follows, 
however, that the nature of coupling is in general dependent not only on the 
properties of the plant but also on the structure of the control system itself. 

To establish the dependence of coupling on structure, we divide the 
control systems into a number of structural groups according to the 
following signs: 

(a) systems made up of one-loop single-variable subsystems; 
(b) systems made up of one-loop single-variable subsystems with 

derivatives of from (n -2)-th to the first order inclusive delivered to the 
input (the system can be made stable when the subsystem gains increase 
indefinitely); 

(c) systems made up of multiloop single-variable subsystems. 
Let us consider each of these groups separately. 
(a)   Figure 6.14  is a block diagram of the control loop for the i-th 

variable.    This structure is described by the following operator equation: 

\Dt (p)RAP) + KftJ Yi + Kfit (p) 2 o,ikY k = KJKJT^, + KiRi(p)fi,        (6.101) 

where Dj(p) and Ki are the self-operator and the gain of the plant in respect 
to the i-th variable; R{{p) and Kct ditto for the controller; a** the coefficient 
of coupling between the i-th and the A;-th variables,  determined by plant 
properties; Yia{ the reference value of the t'-th controlled variable; f{ the 
load in the i-th loop. 
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We see from (6.101) that the coupling between the individual controlled 
variables depends not only on the properties of the plant (the coefficients 
at* and Kt), but also on the fundamental properties of the controller.    For 
the sake of convenience, we divide (6.101) through by Kct: 

bkD'ip)XiW+Kt]rl+Ttrii,u>)'2l*lllyll= KX^H+^R^U- (6.102) 

The degree of coupling increases as Ki is increased and decreases as 
the controller gain Ka increases; moreover,  the dynamics of coupling 

depends on Rt(p).   We also see from (6.102) 
that the interrelationship between the 
controlled variables can be made arbitra- 
rily small by appropriately increasing the 
controller gain Ka,  provided,  of course, 
that the system remains stable in the 
process.    If in the class of structures 
being considered Di(p)R,(p) is of higher 
than second degree, the critical gain Ka „ 
should have a finite value, which deter- 
mines the lower bound of coupling. 

(b)   To permit increasing the gains Kct 
indefinitely without loss of the stability,  derivatives of all orders from 
(n-2)-th to first inclusive (where n  is the degree of the operator D,(p)/?j(p) ) 
are delivered to the system input.    The equation for the j-th controlled 
variable then has the form 

-H2>— > 
Di(p) 

fl 
> 

Yi 

FIGURE 6.14.   Disturbance rejection con- 
ditions for   /(_-»• co. 

O, (P) Rt (p) + KaK, (a0p"-*+alP»-3- ■■ +1)1',+ 
(6.103) 

Dividing (6.103) through by Ka, we find 

-Z^Di(p)Ri(p) + K,(fl0p'<-*+alp'>-s+ ... +\)r,+ 

In terms of coupling this case is not different from that under (a).    It is 
significant, however, that the gain Ka may increase indefinitely without 
incurring the danger of instability.    The degree of coupling can therefore 
be made as small as desired. 

In the two structures above decoupling is attained simultaneously with 
rejection of the external disturbances ft. 

(c)   Finally we consider the case of multi-loop subsystems.    Figure 6 15 
is a block diagram of the multi-loop configuration for the i-th controlled 
variable.    The corresponding equation is 

1 [Q, (P) Fmt (p) + K, „ F« (/>)] N, (p) D, (p) + K, „ Fml (p)) Yl (p) + 

+ K, S a,^, (p) [Q, (p) Fml (p) + K, „ P., (p)] N, (p) = 
= K, „ Fml(p)rlKf(p)+ 

+ K, [Q, (P)Fml (p) + K, « Fmi (p)} Nt (p) f, (p), (6.104) 
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where Kt ,0, =KiKNlKi st and the following nomenclature is adopted for the  i-th 
subsystem: Di(p)is the plant self-operator, Q,(p) the self-operator of the 
stabilized section, Nt(p) the self-operator of the unstabilized section; Fni(p) 
and Fmi(p) are respectively the numerator and the denominator operators 
of the stabilizer ratio; Ki„ is the gain of the stabilized section, K% the plant 
gain, Km the gain of the unstabilized section. 

K, Nl Ki Hi 

Ni(p) 

-—&+■    > 

Qi(p) fyp) 

2\* > >   ■ J* 
i < n 

< F,l (Pi 
/■mi W 

Yi 

FIGURE 6.15.   Illustrating the disturbance rejection conditions 
in a more complex case. 

To simplify further analysis, we write (6.104) in the form 

{[1£rQ,(p)Fml(p) + Fl,!(pJ\"l(p)Dt(p) + Kmf<lFm!(p)}yl + 

+ 1fc-Qi(p)*fl(p)Fml{p)'%aurt + 

+ KtF., (P) Ni (P) 2 a,»]'» = KtKNlFml (p) YM+ 
t+k 

K, 
^T^lQi(P)Fmi(P) + K, . F„,(p)\N,(p)f,. (6.105) 

We see from (6.105) that the dependence of coupling on structure in this 
general case is determined by the two components of equation (6.105) which 
contain the sums Sa;*^t-    In the first component the coupling coefficient 
is directly proportional to the plant gain for the i-th controlled variable, 
dependent on the controller self-operator and the denominator operator 
of the stabilizer ratio, and inversely proportional to the gain of the 
unstabilized section. 

In the second component the coupling coefficient is proportional to the 
plant gain and dependent on the self-operator of the unstabilized part of 
the controller and on the numerator operator of the stabilizer ratio. 

In systems with infinite-gain stability, the first component can be 
reduced to a minimum by increasing the gain parameter K{ st.    The second 
component has noticeable influence on the dynamics of the process,  since 
under steady-state conditions F„t(p)p=s0=0. 

A similar pattern is obtained when stabilization is achieved by ideal 
derivatives embracing only a part of the control circuit.    The corresponding 
equation can be derived from (6.105) by putting Fmt(p) = 1. 

We have thus established that, although the individual controllers are 
not interrelated,  the coupling of the controlled variables is highly sensitive 
to the structure of the single-variable subsystems.    External disturbances 
can be rejected only by increasing the overall gain. 
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§ 6.8. NONINTERACTION AND IN VARIANCE IN THE 
GENERAL CASE OF A MULTIVARIABLE COMBINED- 
CONTROL SYSTEM 

In this section we proceed with a discussion of multivariable control 
systems with the variables interconnected through the plant and through 
the load.    In previous sections we have established that invariance in 
systems of this kind does not necessarily imply noninteraction, and vice versa: 
noninteraction does not automatically ensure invariance.    We will now con- 
sider some methods that ensure noninteraction and invariance simultaneously. 

Y  ,i 
Qi(pl 

ffci 

Rtlp) 

Zßi*'P)f* 

K 

h<P> r'^<* > > 

< 
Fni (PJ 

Fmi<P' 

> 
i i 

U xu (P> Y«<P) 

EfiixtPfaO 7) 

£au,(p)Yk(p I 

FIGURE 6.16.   Illustrating simultaneous derivation of noninter- 
action and invariance. 

We have seen that invariance to an accuracy of e is achieved in structures 
with infinite-gain stability by applying an additional disturbance signal to 
the general stabilizer input.    We have also seen that noninteraction for 
structures of this kind is attained by additionally delivering to the general 
stabilizer input the sum of all extraneous controlled variables, each 
multiplied by the respective coefficient aik(p). 

Let us now consider how to simultaneously achieve noninteraction and 
invariance.    We will establish the additional restrictions to be imposed 
on the system structure and parameters in this case. 

Figure 6.16 is a block diagram of the i-th subsystem in a multivariable 
combined-control system.    We see from Figure 6.16 that the sum of the 
extraneous controlled variables is delivered to the stabilizer input.    The 

element with the transfer function   „ .c', additionally receives the sum of all 
Ri(p) J 

the external disturbances (through a transducer).    This structure is a 
logical outgrowth of the configurations considered in the previous chapter. 
As before, we assume that the system is structurally stable at infinite gain. 

Without repeating the elementary manipulations, we write the matrix 
equation for the case on hand: 

Yj = A-' (p)\BVrcf + LF\. (6.106) 
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Inserting for the matrices their explicit expressions and multiplying 
we find 

r(/») = - 

2 ^Arl^c*'**^ref/S 

2 ^kjKc khu^tclll 

2 Wcl'ttlnM 

+ ■ 

S^i[fc*(c**-pM)+"»]2M/ 

4=1 1=1 

(6.107) 

For the y"-th controlled variable we have 

in n n \ 

Here 

A = 

flu+f<: i*n     rfnai2 rfii«iy rfiiOin 
^22a21 fl22~r^c2*22      "22a2/ "22a2fl 

dnnan\ dnrfln)     "nn+^cfi^nn 

A^jis obtained from the transpose .«4,, 

*U=QlRPfmfl.t- 
bu = MlK,Fmfiml+F«QiPßmi. 
cu = KiFntQßml, I (6 109) 

lu = K,MuFmfiml, 
Pu = KPniQiFml. 

Let us first consider invariance of the controlled variable Yt under 
the disturbances.    Invariance is ensured if 

*e»(*M-PM) + <*M=0. (6.110) 

Inserting for cu,, pwi, and dhhtheir expressions from (6.109), we write 

^„(K.F^Q.e^-K^Q.F^+K.Q^F^B^^O, 

K„Qt (Fnkemk - Fmkemk) + K>Q»Ym"*mk = °- (6.111) 

Since by assumption the structure is stable for Kc-*-°o, the conditions 
of B-invariance for sufficiently high Kc are still written in the same form 
as in Chapter Five: 

Fmk ©m* 
(6.112) 

Now consider the noninteraction conditions.   Noninteraction of the /-th 
controlled variable is ensured,  i.e.,  the controlled variable Yj is made 
independent of all Yk, k= 1,. . ., n, k 4* j, in both the steady-state and the 
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transient modes of operation if the determinant A in (6.108) is independent 
of the coupling coefficients aih; an additional requirement is that the right- 
hand side of the equation should contain terms with Kref/ only, while terms 
with Y,«k,   k= 1, 2, . . ., n, k* j, all vanish. 

n 

The product  II^c, can be taken outside the determinant A. Putting-J-=m-, 
we write 

A=n*c 

m,d,,a i"n«iy 
m2d22a2t     m2a22 -f- b22    m2d22a,j 

m,dualn 

m2d22ain 

mndmfln\ mn<tnrflnl    <n„an„ -f bm 

(6.113) 

*ii      o   . ..    0    . .    0 
0   b22    . ..    0    . .    0 
0    ... >n ■ .    0 

0    ... • • • »„ 

If the necessary and sufficient conditions of stability /39/ are satisfied, 
the determinant (6.113) for sufficiently large Ka (m,-*0) degenerates to 

(6.114) 

n 

If for the time being we ignore the factor JJ[Kch  the left-hand side of (6.108) 

separates into n factors and the determinant is independent of the coupling 
coefficients aik. 

Consider the right-hand side of (6.108).    If the invariance conditions are 
satisfied,  it has the form 

n 

S'VWJ*)',^. (6.115) 

Let us derive explicit expressions for Ak! in the case Kck ->oo-  The 
transpose has the form 

"u + Kclbn   d22a2l dj&jt d„„a„, 

du<*i2 "22 + Kc2b22   dl2aj2 <2„„a„2 

rf.ia,; d22a2l ajJ + KclbjJ 'd'n^ ■ (6.116) 

ä,,ain d22a2n d„^aJa ann + Kcabl 

A&j — 

For the /-th controlled variable Y} the elements of the /-th row in the 
transpose are replaced by their cofactors, which are the Ahj. 

Now the cofactors have the following obvious properties: 
(a) In the nonsingular case the rank of the cofactor is one less than 

the rank of the system determinant. 
(b) In each cofactor Akj (k + j) there is at least one row which contains 

no elements with Kcl, and it is only in A}} that each row contains an element 
with Kcl. 

Making use of these properties of cofactors and employing equation (6.113), 
we write for the /-th controlled variable 

YJ = 

Ü^l'nK c 11 m I Yni I r=i I "*„rf„„a,„      ... mnan„ + bn 
'tßt/ 

ui 
(6.117) 
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where 

ßi=JÖ[ff« "ija/jaj,  mjdjjaj„ 

Mndnrflnl  mnann+l>n, 

Here |m| is a determinant with all the elements of at least one row 
multiplied by m; dots in the numerator in the explicitly written determinant 
|ffi| indicate that elements multiplied by \m\ are to follow.   It is also clear 

n 

from (6.117) that all the terms contain a common factor ü^c;.    Dividing 

the numerator and the denominator by TI A"ci and passing to the limit as 

m->- 0, we find 

hi 

bn   0      0 
0      ba   0 

Bj-l.J-l 0 

.'       tn. 
*,,   0 
0 »21 

0    ... 0 
0    ... 0 

^ref ) 
'     ")1     " 

(6.118) 

We have thus obtained noninteraction of the /-th controlled variable to 
an accuracy of e.    Hence readily follows the conclusion that if the structure 
in Figure 6.16 is stable at infinite gain and the necessary and sufficient 
conditions of stability are satisfied, this structure can be made to ensure 
simultaneous noninteraction and invariance at sufficiently high gain. 
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Chapter Seven 

SYNTHESIS OF FIXED-STRUCTURE SYSTEMS WITH 
PROPERTIES EQUIVALENT TO ADAPTIVE SYSTEMS 

§7.1.    INTRODUCTION 

Adaptive (self-adjusting) systems are used when the control system is 
expected to alter its properties in accordance with the properties of the 
controlled object.    This situation may arise in the following typical cases: 

(a) The plant parameters change in the process of control.    The variation 
of plant parameters may be due to external disturbances which cannot be 
programmed beforehand or to some change in the operating conditions of 
the plant. The structure and the parameters of the control system, though 
quite adequate for the initial state of the plant, may prove to be inadequate 
under the new conditions. 

(b) There is an extensive class of controlled objects whose output has an 
extremum in relation to a certain quality criterion.    The problem to be 
solved in the design of control systems for these objects is how to find 
the extremum and how to hold it by on-line variation of system parameters, 
so that, irrespective of external disturbances,  the plant always remains 
on the optimum frequency response (optimum operating conditions).    The 
control system is provided with an appropriate searching circuit, which 
is generally a fairly complex device.    Searching control systems are also 
used when no information is available on the plant properties or when only 
partial information is at hand. 

In any case the system should have the property of adaptation or self- 
adjustment.    Sometimes simple adjustment of the numerical values of some 
system parameters is insufficient, and adaptation is attained by actually 
changing the structure of the system. 

Systems with a self-improving program are somewhat different from 
adaptive systems.    Here, the ordinary feedback logic is insufficient for 
effective control.    The characteristic features of this case are best illus- 
trated by the following example. 

In Chapter One we considered the continuous hot-rolling mill as a typical 
example of a multivariable controlled object.    The principal aim of the 
control system was to ensure constant thickness of the rolled sheet.    The 
sheet thickness is a function of many variables.    In the general case, 
the deviation from a given gage can be expressed as 

a = F(hl, T, »;, n,+i, t, 6, T,), (7.1) 
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where ht are the roll coordinates,  T is the rolling temperature, nt, ni+i are 
the rolling speeds in the i-th and the (f + l)-th stands, %i is the time lag, 
6 is a random variable,  depending on the condition of the mill, uniformity 
of the metal, and other random factors. 

The problem is to choose the variables entering the function F so as to 
minimize the gage deviation a (ideally it should be zero) and to maintain 
it between permissible limits. 

It is clear that (7.1) is a functional and we have here a variational 
problem.    It is also fairly obvious that we are dealing with a problem 
in multivariable control.    Indeed,  the sheet thickness can be altered by 
changing the roll gap or by adjusting the strip tension.    These two methods 
of gage control, however,  are not independent.    We know from the theory 
of rolling and from numerous experiments that the variation of roll gap 
effectively alters the strip thickness only if the interstand tension remains 
constant.    If now the roll gap is adjusted without controlling the rolling 
tension, the thickness will change insignificantly and there is moreover 
the danger of looping on the reduction end of the stand and stretching (or 
even rupture) of the strip on the other end.    This development must be 
avoided at all costs,  so that the roll gaps and the rolling speeds are 
controlled simultaneously. 

The roll gap is controlled through the pressing screws, which are 
positioned by a special regulator in each stand; the roll speeds are adjusted 
by controlling the main drives of each stand.    The different control systems 
are interconnected through the strip.    Hot-rolling gage control has another 
characteristic feature which requires a special approach to the design of the 
system.    The strip thickness can be directly measured only after the last 
stand; transportation lag makes it impossible to act on the strip section 
that is being measured at the given time.    This is the main reason why an 
ordinary deviation-control system will not do in hot-rolling mills. * However, 
the distribution of thickness variability along the strip is nearly the same 
for the /-th and the (»°+l)-th strip, while for nonconsecutive strips this 
distribution may be essentially different.    This hypothesis is borne out by 
a wealth of statistical data and constitutes the basis of what is known as 
systems with self-improving program. 

In these systems, the rolling program for the i-th strip is developed 
from the measurement data for all the previous «—1 strips.    Rolling-mill 
control processes are of independent interest; here they are discussed only 
as another example of adaptive systems. 

We see that adaptation or self-adjustment is required when the plant 
properties change due to external or internal disturbances and when 
incomplete information is available on the controlled object.   An indispen- 
sable component of such adaptive systems (with the exception of the last 
one considered in this section) is a searching circuit, and adaptation is 
achieved by an adjustment of the system parameters or even modification 
of the system structure to meet a certain quality criterion.   An interesting 
question to be considered in this context is the synthesis of self-adjusting 
systems which adapt without requiring a change in structure.    In the 
following we shall see that such fixed self-adjusting structures can be 
designed for a sufficiently large class of controlled objects.    The subject 
of this chapter is thus fixed-structure systems which have the same 
properties as adaptive systems. 

*     Deviation control can be instituted by regulating some indirect parameter, e.g., the roll pressure. 
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§ 7. 2.    STRUCTURAL NOISE REJECTION IN A 
CERTAIN CLASS OF DYNAMIC SYSTEMS 

As we have previously noted, one of the reasons for the variation in 
plant properties is the presence of external disturbances.   A highly topical 
problem of modern automatic control theory and practice is the choice 
of structures and parameters which are as noiseproof as possible. 

Considerable attention is devoted in the literature to the problem of 
noise suppression (see, e.g.,  /66/).    The case considered in /66/ is that 
of a noisy input, when the aim is to isolate the effective signal against 
the background of noise. 

In automatic control systems and in a number of servosystems the 
effective signal or the reference pulse are without noise.    Noise is injected 
in several points along the control channel.    This noise is contributed by 
various loads and disturbances, which may be of a random nature.    In this 
section we deal with the case of random noise and show how to choose the 
structure and the parameters of a control system so as to minimize the 
interference.    In the beginning we consider a single-variable system, and 
then generalize the results to multivariable control systems. 

1.    Single-variable control system 

Figure 7.1 is a block diagram of an automatic control system.    The 
reference signal yrcf is delivered to the input and the system is expected 
to reproduce this signal faithfully.    It is assumed that Y,cf is noisefree. 

ZßW O&jpi KA.,¥ KA«V ta3$a& W     4w»   WPI 
B.fo)   D..fn,     n..,n,    nyia(p)    n@       A.a,ß{0 By^mW ~$Jp> 

fy>4>hr>H>"i-----m--^ 
f^fc* 
K«(p>  W^JP) 

FIGURE 7.1.   The general case of an W-element system. 

The system consists of N elements with transfer functions K,R'(p)      Of 

these N elements, a+m elements in different parts of the closed loop are 
noisy.    For the sake of simplicity, let a noisy elements be concentrated 
in one part of the loop, and the other m elements in some other part,  so 
that ß noisefree elements separate between the two groups a and m.    This 
particular setup is adopted in order to simplify the mathematical manipula- 
tions.    The conclusions, however, are quite general and can be applied for 
an arbitrary distribution of noisy elements in the control loop.    There is 
only one condition imposed on the position of the elements.    If the system 
input or origin is the point where the reference signal is delivered (we 
have already remarked that the reference signal is noisefree),  then the 
first v elements after the input (where v is any nonzero integer) are without 
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noise.    Since noise is not necessarily injected at the input of each element, 
the transfer function between the point of noise injection and the output of 
the element is regarded as being different from the transfer function of 

the element (we denote it by l^llfl) 
o'iO»l' 

There is only one restriction imposed on noise: the noise and all its 
time derivatives have a finite absolute value,  i.e., 

|fl*>|<Af       (/=1. 2, .... i»;* = 0, 1, .... «). (7.2) 

Otherwise,  the noise may be represented by any,  in particular random 
function of time. ' 

We now prove some properties of this class of structures,  which are 
jointly referred to as "structural noise rejection". 

The accuracy of reproduction of the input reference signal Y„, increases 
as the gain of the noisefree elements increases.    Noise is suppressed by 
the gain of the elements immediately preceding the noisy components of 
the dynamic chain. 

To prove this proposition,  we have to find the transfer function of the 
system shown in Figure 7.1. 

For the noisefree elements we may write 

_K,R,(p) 
> DÖPT

X
'- (7.3) 

For the noisy elements, 

After some calculations, we obtain the following expression for the 
output of the loop shown in Figure 7.1: 

'v+a+p+m 
n    KjRi (p)K„R„(p) 

L     i=1       Di(P)     Dn(p)   +1 

V+a + P + m 

=      TT     !<!M£)f(nßAp)y       , 
f=l       D,(P)     Dn(p)   *«■< + 

D"(p)   >\kiD'™   h£~B^P~) °v+,-:       &-'+ (7.5) 
+ K*K'W>   V  TT   "v+n+f-f/O')   *v+a+p+A+a+e+,-, (P) K'X(P) , 

D-(P)   ££1 Dv+a+f+/(/>)      D'v+a+ß+j_t(p)      /.+;-i+ -5iJpYf-- 

Let the gain of the noisefree elements be sufficiently high.    Then 

dividing (7.5) through by JJff, jl +K, and putting -]L = ±- = „, we obtain 

after simple manipulations 

[v+o+p+m o m 

»v+' 11 0,0») n D)(p)  n /W)A,(/O+ 
'=• /=v+l     '       p.v+a+p+1 

+KnRn(p)D'n(P) n Kfi,ip) n D'aP)  n  *>*>( 

X p_v+n HI D,(p)j Kout = KnRn (p) Dn (p)  U K,R, (p) X 
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x  n  KjRj(p) n D'J(P)  n ^W)*-* 

ß + m a 

+ncKji. (P) n R, (p) s n tfv+p£v+P(P) Afv+P-i/?;+^-i (/>) x 
;=a+l p=l 

xWD/(/')|Dv+1(p) + Ov+2(Jo)Dv+.(p)+ ... +üßv(/')|x 
/»l I V = l J 

a m v+a+ß 

X  [I A:(P)     II      D)(p)]l_l-\-nf**KJin(p)   II ß,(/>)X 

x|Ov+a+p(/') + Ov+a+P + l(/>)+   ...  + ft Dv+a+?+/ (/>)J X 

m + 1    m a 

x 2 iiut»+^M+w(p) n oi(pi  n  fljwx 
>=2 p=i f=v+i y=v+a+ß+;     ' 

v+a+ß+m 

X^v + a+, + ,-Itf;+B+,+/-,(P)/. + ,_1 + «v+'      II      D,(p)X 
a "L 

x n D,(P)  n DiWw.wt, (7.6) 

From (7.6),  clearly, 

Hmr0B=J'wf. (7.7) 
m-*0 

if this limit exists,  i.e., if the system is realizable (stable) /39/.    We 
have thus proved the following: 

(1) for the class of structures being considered noise can be suppressed 
by increasing the gain of the noisefree elements; 

(2) noise suppression improves for noisy elements far from the input. 
The general equation of the output variable for structures of this class 

can be written as 

[mv+P+v+ ...Ffm (p) + R0 (p)\ Y out = tf0 (p) Ktef + nf 2 Fv+1 (p) ft + 

+ i*»+'2Fv+,+, (/>)/,+ ... +nP+*+i+-F,(p)fm\ (7.8) 
j 

for m->- 0 

Such a system is realizable if and only if it remains stable for m->-0, 
i.e., for Ki^-oo.    In other words,  if the system retains its stability despite 
an indefinite increase in the gain of the noisefree elements,  the reference 
signal can be reproduced with infinitely high accuracy.    The structural 
aspect of this proposition is that noise is suppressed by the gain of the 
elements which are situated between the input of the control system and the 
noisy element. 

2.    Multivariable control systems 

Figure 7.2 is a block diagram of the j'-th control loop.    The plant and 
another element of the circuit are noisy.    That the loop includes only four 
and not N elements obviously does not affect the generality. 
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The relevant equations in Laplace transforms are 

*i = 
Ka 

Du (/>) '.ref ( " 
Kg     Y 

DU(P)     " 

X=- K<>i 

Du(p) *i + ^</>) 

/Csj 

D„(P) *2' 

+ 

Solving equations (7.9)—(7.12) for YL, we find 

[ jtt A*(/>) 02/ (/>) °« (/>) + KuKnKuKuD'v (p) D« (/>)! K, 

+ £>,< (/>) A>/ (/>) Da (/>) Da (JJ) 04/ (p) KAI 2 auKft = 

= KUKVKSIKHDU (p) D'tl (p) YK! i + 
+ Du(p) D',(p) K'2iKsiKJu + Du(p)D2l(p)D31 (p) D'2l(p)K'J2l 

Dividing both sides of (7.13) by K1K3 and putting 

1        1 
K\t      Ksi 

we obtain 

\m* JJ_Dlk(p)D2l(p)D»(p) + KvKvDu(p)D<,(p)] Yi + 
+ m2Dx (p) D2t (p) D3! (p) D2i (p) D» (p) K< 2 a,»!', = 

= W>i (P) D\i (P) y« i + ™Du (P) D2i (P) D'v (p) K2lKJu + 
+ m*Du (p) D2i (p) D3l (p) D4l (p) D'„ (p) KJ2r 

and in the limit of very high gain 

limK; = r,ref. 
m->0 

(7.9) 

(7.10) 

(7.11) 

(7.12) 

(7.13) 

(7.14) 

(7.15) 

We have obtained the same result and the same structural property. 
Thus, the disturbance fu is close to the input and only the gain of the first 
element is available for its suppression.    The disturbance f2i is far enough 
from the input to be suppressed by the gains KH andKu, etc. 

f, \*i. 
*tito 

\K'n     Ji_    $\   ft 
WP)   *fiä     \WP> v^2H3TH>myw> 

£L_     £<d   _&_ 
V#   $   I   %(p) 

FIGURE 7.2.   Illustrating structural noise rejection. 
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Structural noise rejection is thus a property that can be readily extended 
to multivariable control systems.    Here again system realizability is 
obviously connected with considerations of infinite-gain stability. 

§ 7. 3.    PHYSICAL REALIZABILITY OF SYSTEMS 
WITH STRUCTURAL NOISE REJECTION 

First let us consider the realizability of noiseproof structures in 
application to single-variable systems (Figure 7.3).    The noisy elements 
are the second and the fourth.    The gain of the noisefree elements can be 
manipulated as required. 

K,R,(Pi   W2(p)   HAM W*(p) 
v,(p) 

WP) 

D3<P) 

> *7rU 
K'tfyp) 
KW 

FIGURE 7.3.   Noise rejection in a more general case. 

A structure is said to be realizable if it remains stable at infinite gain 
and if the noise can be suppressed by increasing the gain. *   It will be seen 
from the following that noise rejection is possible only if the high-gain 
element is unstabilized,  so that the questions of stability and realizability 
should be considered separately in this case. 

After appropriate calculations,  we obtain for the output variable of the 
structure shown in Figure 7.3 

Y     =- ■•   out   ^^ 

J{ Rt (p) D'2 (p) D{ (j>) K&KtKfrt 

it D, (p) D'2 (/>) D4 (p) + D'2 (p) D[ (p) n Rt (p) K&Wi 

 Pi  
—4 4 , 

n Oj (p) Dj (p) D4 (/>)+D2 (p) D'A (/>) n /?, (p) /C,A:2/C3/C4 

(7.16) 

where 

Pi = jft Di (p) D2 (p) titi h + A (p) D, (p) D\ (p) K2 (p) R2 (p) K3R, (p) KtR* (p) ft- 

System stability depends on the position of the poles of the right-hand 
side of (7.16) or,  equivalently, on the zeros of the characteristic equation 

jj D, (p) D2 (p) D'< (p)+D2 (p) D'< (p) g Rt (p) KxKtKzKi = 0. (7.17) 

*    A more rigorous discussion of realizability, taking account of system coarseness requirements, is given 
in a special section in what follows. 
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Dividing (7.17) through by K1K3 and putting 

1        1 
Ki      Ks 

-til-, 

we write 

[m^Di(p) + K2Ki
1n.Ri(p)]D'2(p)D'4p) = 0. (7.18) 

The system is realizable if and only if the roots of (7.18) are in the left- 
half plane for /n->-0.    Now, we see from (1.18) that for this to hold true it 
is necessary and sufficient that the roots of each factor in (7.18) are in the 
left-half plane for m->-0.    Since the roots of D'i (p) D\ (p) are independent of m, 
the roots that they generate depend on the self-operator of the noisy 
elements.    We assume that the elements are intrinsically stable, and 
D-i (p) D'i(p) = 0 therefore has left-half-plane roots.    The stability of the 
system as a whole therefore depends on the roots of the second factor 

m^Di(p) + f(2KA'ffiRt(p)^0 (7.19) 

for m->0. 
The results of Chapter Three suggest the following procedure for the 

determination of the stability conditions. 
4 

Let N2 be the degree of the polynomial T[0, QJ) and Ni the degree of the 

polynomial JJR,(p); the system is stable if 

(1) iV2-^,<2; 
4 

(2) K2KAJfRi{p) = 0 satisfies the stability conditions; 

(3) certain relationships are observed between the coefficients of the 
4 4 

polynomials H£>,-(/>) and K^KiYlRi (p) depending on which of the two following 

equalities is true: 

or 
N2 — Nl = % 

Let us consider the most difficult cases as far as realizability is 
concerned. 

Suppose that the elements shown in Figure 7.3 are made up of aperiodic 
components.    If out of the total of JV components, v are high-gain devices, 
equation (7.19) takes the form 

mv fid+ 7»+ft tf,    II    Kj = 0. 
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Putting Jl_Ki    II    Kj — Ki„, we obtain 

(7.20) 

Equation (7.20) clearly satisfies the stability conditions for m->-0 only 
if  N<2.    This is a trivial case of very limited interest. 

Let us consider stabilization of the system for N2>2. 
System (7.20) is stabilized for m->-0by feeding into it derivatives at 

least from the (N -2)-th to the first order.    We now modify the structure 
of the system by introducing additional N-2 amplifiers (the gains of these 
amplifiers can be made sufficiently high).    Each of these amplifiers is 

M, enclosed in a negative feedback loop with a transfer function   t , T 

(Figure 7.4).   As regards the remaining part of the circuit, we assume 
that v out of the N aperiodic components are noisefree, and that their 
gain can be varied between wide limits. 

K* 

r > — > — 

A'' 

Djlp)      fyfp) 
>   "*    >   "1 

„,fe 

H-N-Z 

1+T„.2P 
4> %(P) 

FIGURE 7.4.   Structure ensuring stability and noise rejection. 

For the sake of simplicity the noisy elements are collected in two groups, 
which are located as shown in Figure 7.4. 

For the first N-2 feedback-controlled amplifiers we have 

*/h(l + 7» x     — TT   *"u'-t-'/*')   IV      Y   \ 

X2-- 

Ki 

x.= 
D2(p) 

Xt + 
K 

D2(p) h 

D3(p) "2 

*4 

x2, 

X3+ ■f* out        Dt{p)      °  ■    D\(p) 

Eliminating A-,, X2, X3, XN_2 between (7.21)—(7.25), we find 

\ Di (P) 0(^+1+ Kiwi) D2 (p) D'4 (p) + 

+ J[I Kt JO ffih (1 + T,p) D'2 (p) D< (p)} Yom = 

(A< 

(7.21) 

(7.22) 

(7.23) 

(7.24) 

(7.25) 
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4 JV-2 

=A K, II Klh (i + 7» 02 (/>) Di (p) rref+ 

+o, (p) D2 (p) D; (p) g (7>+1 +Klh\i1) Kwjt + 

+ ED, (p) D'2 (p) II (7>+ 1 + Klblll)/,. (7.2 6) 

N-2 

The left- and the right-hand side of (7.26) are divided by HKmKifc. 

Assuming that /Gh> K\ and tf3 are of the same order of magnitude, we put 

~K~ = TC~7C = m ant^ a^ter elementary manipulations we obtained from (7.26) v3 

J m Jl D, (p)   m»-* J (l + r,/,) + m"-\. £ |f (1 + 7» + 

+ mÄ-VS    )öj  (1 + ^)+ ...+(J./v-2] + 

K,Kt jjj (1 + 7»JD2(p)D\(p)Y„=m [m""2|jf(1 + 7» + 

+ mN-hi 2 II (1 + T,p) + ... + |iW-»   X 

X */#>, (p) D2 (p) D4 (p) ft + ««p-« JJ (1 + 7» + 

+«"-*ya jj(i+^)+ 
'!<■/ 

X 

X jft a, (P) D; (P) h+K2K< jD[ (1 + 7» D^O; (/,) K„f. (7.27) 

Here 2 indicates that the first sum is taken over the combinations of the 
products of all the subscripts,  except /= 1, the next sum is taken for \ + 2, etc. 

We see from (7.2 7) that the gain of the feedback amplifiers does not 
affect the noise, neither enhancing nor suppressing it.    The only contribution 
from the feedback amplifiers is that they alter the noise amplitude by a 
factor of M"'2.. If /W<1,  the noise is appropriately amplified.   As in the 
previous examples, the noises are suppressed by the gain of the noisefree 
elements without feedback.    If their gain is sufficiently high, noise is 
effectively eliminated. 

Let us now consider the left-hand side of (7.27) which, when made equal 
to zero,  gives the characteristic equation that determines the stability 
(realizability) of the system.    Thus, 

m«Jl(\+Tip)J\_Dl(p) + 

+ «"-'C 2   jDJ (1+ T,p) JjlD,(p)+ ... + «V»-«itD,(p) + 

+ K2KijJL(\ + rip) = 0. (7.28) 
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The degrees of any two adjoining polynomials in (7.28),  with the exception 
of the last pair,  differ by 1, and the difference in the degrees of the last 

4 

two polynomials is 2,  since the degree of the polynomial JlD^p) is by 

assumption N (we are dealing with aperiodic components). 
The structural stability criteria formulated in Chapter Three are thus 

satisfied.    The degenerate equation in this case is 

wno+^-o. (7.29) 

It always satisfies the stability conditions.    In order for the system to be 
stable (realizable) it is clearly necessary and sufficient that the auxiliary 
equation of third kind satisfies the stability conditions.    The auxiliary 
equation can be made to satisfy the stability conditions by an appropriate 
choice of the time constants Tt,  the feedbacks, and the gain factors fi( and f^Ki. 

We have thus proved the realizability of these structures.    In this 
case we have incorporated in the system iV-2 high-gain amplifiers. 
If N— 1 amplifiers are introduced, we obtain an auxiliary equation of 
the first kind, which in our particular case always satisfies the stability 
conditions, as it can be reduced to the form 

jft(l + ^) = 0. (7.30) 

The number of amplifiers in the system can be reduced to  N/2.    The 
corresponding auxiliary equation is of the second kind (see Chapter Three), 
and the feedback parameters (second-order feedback loops are used in 
this case) should be so chosen that the auxiliary equation satisfies the 
stability conditions. 

§ 7.4.    REALIZABILITY OF NOISEPROOF STRUCTURES 
IN MULTIVARIABLE CONTROL SYSTEMS 

The results of the preceding section suggest a convenient approach 
to realizability for multivariable control systems.    It is of course clear 
that the noise-rejecting gains should not be stabilized.    The structure of 
the system in Figure 7.2 should therefore be so modified that the system 
becomes realizable and the high-gain elements Ki and K3 are left unstabilized. 
Figure 7.5 is a block diagram of an i-th subsystem which meets these 
requirements. 

"2®. 

*n %       HJi 
"tci    „       "J*   , ,      *Jd    „ W    *u(PK IHW 

* > 1 ft ̂  > 1 fär>A U>*JL>Z> * 
/,'    » * 1 T 
H<V L- < -1 L<J fi *«** 

M 

-k 1i(P) 
M2i 

FIGURE 7.5.   Illustrating realizability conditions. 
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Making use of the nomenclature of Figure 7.5, we obtain a 
equations describing the behavior of this system: 

set of 

•Kl = Kl c } (Kef i — Yl — X)), (7.31) 

y'       •*"    v (7.32) 

whence 

■"l        KlclKcf       Klcl^i        p.  tp\ X\, 

or 

V   '     Fu(P)  ) — ^cn^"'      KcfXii (7.33) 

and similarly 

X*V  '    fi,W ) —^^i- (7.34) 

"M1   '    ^,(p) j-KcuX» (7.35) 

V           f»        V (7.36) 

^5       D»U>) A<  !    D„</>)> (7.37) 

Ae   "   D3l(p) A=. (7.38) 
n 

r'       Dtt(p)A«l    D,i(p)h       Dlt(p) Zia'"Y"■ (7.39) 

Eliminating X,, X2, X,, XA, Xs and X6 between (7.33)—(7.39), we obtain after 
elementary manipulations the following equation for the i-th controlled 
variable:                           g 

[j0[ A*(P)JD^,» (p)+ü«^.„)+gAT« jt /f.,» J[F|»0»)] K, + 

+ K« ji Dlk (p)Ji (Flk (p) + »ihKc „) Jj o„ (/>) K4 = 

=JLKik^KcikJ^FlAp)Yttti + Du(p)ii(Fik(p) + 

4                    33 
(7.40) 

Putting /= 1,. . ., n, we obtain a complete set of equations describing 
this multivariable system. 

Suppose that the gains Kci of the feedback amplifiers and the gains /fcl 

and /(c3can be made sufficiently large (theoretically infinite).    For the 
sake of simplicity we assume that the gain factors are all of the same 
order of magnitude.    Putting 

1         1        1 
Ac is        *M         Aa 
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and dividing (7.40) through by JLKC kK\Kz, we obtain after simple manipulations 

{trtjl Dik (p) II \mkFlk (p) + \itk] + Kl2Kl4 jft F,h (/>)} Y, + 

+ «»*«, II D,„ (p) A [mkFlk (p) + ft J 2 alk (p) Yk = 
k=l *=1 *=1 

= *«*« II Fik (P) V«, + mDt (p) J{ [mkFik (p) + [hk\ X 

XK2iKiih + m^KAl'RDl(p)ll[mkFlk(p) + \xik}h. (7.41) 

From (7.41), for/»-*■(), 

limKi = Kref/       (t = l, 2, .... a). 
m->0 

The realizability of this configuration is determined by the stability 
of the multivariable control system as a whole.    We have shown previously 
(see Chapter Three) that a general multivariable system with infinite- 
gain stability can be obtained if each single-variable subsystem is stable 
at infinite gain; hence, to obtain the necessary realizability conditions, it 
is sufficient that the roots of the equation 

»i2TlDik(p)Jl\>nkFlk(p) + vtk] + f<„KliTlFil!(p) = 0 (7.42) 

remain stable for m-»-0.    We write equation (7.42) in expanded form: 

Jjl Dlt (p) \ InfiFu (p) F2l (p) F3i (p) + m* \nitFu (p) F„ (p) + 

+ PitFts (/>) Fi3 (p) + \i*uFu (p) Fn (p)] + 

+ m3 [HuViiFn (ß) + H^HiAi (p) + ^lH^a (/>)] + 
+ m^uli2lii3]} +Kl2KltFll(p)F„(p)Fis(p) = 0. (7.43) 

The small parameter in braces appears in order of descending powers; 
the polynomials multiplying the small parameter are likewise in a descend- 
ing order, and all this corresponds to structural stability for m-*-0.    It 
only remains to consider the polynomial 

«ViiUnH« jtt Dtk (p) + KafC^n (p) Fa (pVa 0») = «• (7-44) 

Equation (7.44) corresponds to a realizable system if 

d — v<2, (7.45) 

4 

where d is the degree of the polynomial   T[Dlk(p), and v the degree of the 

polynomial J{Fik(p). 

It is clearly not always possible to choose such a number of feedback 
amplifiers that the structural conditions (7.45) are satisfied. 
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When (7.45) is satisfied, the necessary realizability conditions are in 
a sense satisfied also.    The sufficient conditions are satisfied if the 
degenerate equation of the multivariable system and the auxiliary equations 
of first and second kind for the entire system satisfy the respective stability 
conditions.    The stability conditions for the degenerate and the auxiliary 
equations are generally satisfied by a judicious choice of the feedback 
parameters Fik and  \iik.    In any case,  this does not constitute a problem. 
We have thus proved the property of structural noise rejection for general 
multivariable control systems. 

§ 7. 5.    SELF-ADJUSTMENT PROPERTIES IN A CASE 
WHEN THE DISTURBANCES CAN BE DIRECTLY MEASURED 

Consider an automatic control system where the plant properties 
(characteristics) are highly sensitive to external disturbances, which 
are applied directly to the plant.    In this section we will deal with a 
case when the disturbances acting on the controlled object can be measured 
directly.    We start with a discussion of single-variable systems, and sub- 
sequently the results will be extended to multivariable control systems. 

Suppose that the automatic control system is optimal with regard to a 
certain quality criterion.    The system parameters are calculated and chosen 
ignoring the action of noise, but the system drifts away from the optimum 
setting due to noise interference.   Our problem is to alter the structure 
and to choose the system parameters so that the optimization attained 
without noise holds in the noisy case too.   As we have previously remarked, 
it is assumed that the noises acting on the system can be measured.    It 
thus remains to apply the results of the theory of combined systems 
considered in Chapter Five. 

Ftp) 

KW,fp) 

3H2H2)-*   > 
WP) 

WJW 

< 

> 

FIGURE 7.6.   Illustrating realizability with 
the aid of real stabilizers. 

Take a single-variable control system shown diagramatically in 
Figure 7.6.    In this figure W2(p) is the transfer function of the plant, 
KWi(p) and Ws(p) are the transfer functions of the control system and the 
stabilizer, F(p) is the external disturbance; KWt(p) and Ws(p) are so chosen 
that in the absence of disturbances F(p)the optimum process (with regard 
to a certain quality criterion) is attained for a sufficiently high gain K. 
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For example,  in automatic potentiometric control with nonlinear feedback, 
the optimum process is attained when the system gain is infinite /39/. 
The system of course should remain stable as the gain is increased. 

We will prove the following proposition. For K->-oo the structure in 
Figure 7.6 without external disturbances is equivalent to the structure 
in Figure 7.7 with external disturbances. In other words, measurable 
external disturbances can be rejected if they are delivered as an additional 
signal to the stabilizer input. This proposition follows from the results 
of Chapter Five, and its proof is fairly obvious. Indeed, the transfer 
function of Figure 7.6 without external disturbances is 

KWAP)V3(P) 

l+ l + KWtipiW^p) 
KW,(p)W2(p) 

1 + KW, (p) W3 (p) + KWX (p) W2 (p) ■ (7.46) 

In the limit K-+o° we find 

*-W = Am,*(*>=ir,(,T+£,W- (7-47) 

The transfer function of Figure 7.7 is obtained from the following 
equations: 

rU>) = KW1(p)iXi,(p)-X„(p)-ir{p) + F{p)\W»U>)}, (7.48) 
X«,{p)=Ws(p)lV(p) + F(p)]. (7.49) 

Solving (7.48)-(7.49) forXm (p), we find 

KW, (P) W2(p)Xgiiji) + W,(p)F(p) in 50) 
l + KW^p)W1(p) + KWt(P)Ws(P)' K   '     ' 

whence 
„„^aüÄ^ l£d£)        , (7.51) 

i.e., the same expression as (7.47).    We see that for a sufficiently high 
gain, the system in Figure 7.7 behaves like an adaptive system in the 
sense that its characteristics remain fixed despite the presence of quite 
general external disturbances. 

§ 7. 6.    CASE OF NOISY PLANT (THE DISTURBANCES 
CANNOT BE MEASURED) 

We now consider the case of a plant whose characteristics are altered 
by external disturbances which are not amenable to direct measurement. 
This is a very common case in practice. 

Let the plant parameters in the noisefree case be known.   A control 
system is then designed for the noisefree case and optimized by indefinitely 
increasing the gain K.    Without noise, the system has the structure shown 

194 



in Figure 7.6.    We have shown in the preceding section that for ft-i-oo the 
transfer function of the single-variable control system is 

Km[p) = - 
W,(p) 

w,(p) + w,w 

We now proceed to design the next structure (Figure 7.8).    The controller 
output (X in Figure 7.8) is delivered to the input of the real plant and to the 
input of a model with a transfer function W2{p)(this is the transfer function 
of the ideal, noisefree plant).    The difference of output signals of the ideal 
and the real plant is delivered through a transducer Wu (p)to the stabilizer input. 

KW^p) Wz(p) 

> 
r 

> t>' Ä 
! 

Wjfpi ' 

< 
ripj 

Figure 7.7.   Application of stabilizers 
to noise rejection. 

I *W,(j» Wt(p) 

W.(PI 

< 

1 
<^-r- 

wtw 

Wui(p) 

< 

FIGURE 7.8.   The use of an ideal plant. 

The transfer function of the system in Figure 7.8 is obtained from the 
relations 

X (p) = KWx (p) [Y,ct (p)- Kout 0») - 

- w3oo [x (p)+(rom (p) - r'ou, (p)) wt, o>)]). (v.52) 
y~(p)=W*{p)lX(p) + F(p)], (7-53) 

COO=^0>)*0>)- (?-54) 
In the noisefree case Wi{p) = Wi(p), and since in (7.52)—(7.54) the 

disturbances are represented by a separate term, we write from the above 

[i +KWt(p) w,{p)+KWx(P) w2(P)\ym oo= 
= KW, 00 W* 00 n«t (p) - KWX (p) W\ 00 Wa (p) W% (p) F (p) + 

+ ^20»)F(P) + KW,(p) W3(p) W3(p)F(p). 
(7.55) 

The stabilizer ratio is so chosen that the structure is stable at infinite 
gain K.    Dividing (7.55) through by K, we find in the limit K-+oo 

lVr3(p)+W,(p)]Ym(p) = 
= wjr« 00+[ r2 00 w3 (p) - wl (p) wu oo m (P)] F OO- (7.56) 

We see from (7.56) that noise rejection is ensured if the transducer ratio 
satisfies the equation 

WiOO W»(p)— Wl(p) Wu (p) r8(/>) = 0 

wt,(P)-- 
1 

V,(p)' 
(7.57) 
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A circuit with a transfer function ^rj^ can be designed by the common 

methods used in the synthesis of structures with infinite-gain stability. 
The higher the gain, the closer the resultant transfer function to the 
sought value. 

Ke, 
K* ff„ 

ftp 
Hh    (ht,p)(H2p)!Hp) 

2H- > *i rä p- > *] r^ 
> i 1 Xi r—n 

'— < -J L- < -1 L < J 
; 

7<v,p t'-c.p 7*zp 

FIGURE 7.9.   An example of a third-order system with variable K 

As an example let us consider the case of a plant with the transfer function 

W2(p): K-cp 
0 + r,p)(i + TiP)o + Tp) (7.58) 

The transducer ratio is 

WAP)- i    _ U + r^O + r^a + tp) 
Wi (P) 7Cv (7.59) 

Three high-gain amplifiers Kh are connected in series.    They are 

feedback-controlled (Figure 7.9) by transfer functions .   '      ,   , ,' 
K*p 

and 

1 +T^-    
Transfer functions of this kind can obviously be synthesized without 

any difficulty.    To find the transfer function of the structure in  Figure 7.9, 
we start with the equation 

X2(P) 

*i(A>) 

*„ Kh 

1 + - 
Kh 

1 + - 
Kh 1 + 

KKbrp ■ (7.60) 

1 + T,p      • '   l+T,p      ' "'   1 + T/j 

Dividing the numerator and the denominator of each of the three fractional 
factors by Kh, we find 

X,(p) 
*. (p) ■ + 

1        J_ ,      i 
7>+l       Kh+1 

1    |     Krp 
+ T2p      Kh-rx + xp 

(7.61) 

Putting -g- = m, we obtain after simple manipulations 

X* (P) _ (1 + Ttp) (1 + T,p) (1 + xp) 
XiiP) Ql ' 

(7.62) 
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where 
Q, = «s (1 _|_ TlP) (1 + T2p) (1 + xp) + 

+ m2 {(1 + 7» (1 + 7» [A-T/. + i+xp]) + 
+ m [(1 +1/>) + ATv (1 + 7» (1 + T2p)] + tft/>. 

In the limit ATh->-oo or, equivalently,  m-> 0, we have 

lim Ä77rt"~ Kxp w2(p) 
= Wa(p). (7-63) 

We have thus derived the desired transfer function. 
Equation (7.63) is a degenerate equation.    Readability of the structure 

in Figure 7.9 thus depends on the position of the roots which tend to 
infinity as m->-0.    To solve this problem, we have to draw up the auxiliary 
equatiori and to test its coefficients for stability.    Since a term Kxp enters 
the numerator of the last feedback loop ratio, all polynomials multiplying 
the small parameters are of third degree and the additional conditions 
should therefore be checked for the following equation only: 

m [Kxp (1 + 7» (1 + T2p) + (1 + tp)] + Kxp. 

The small parameter raises the order of the equation by two, and the 
additional conditions have the form (see Chapter Three) 

^ + ^>0, 

which is naturally always true.    We have thus shown that the required 
transducer ratio can be obtained without difficulty.    In reality, Kh are not 
infinite: these are large but finite numbers and the transfer function Wu (p) 
is therefore realizable only to a certain accuracy, which is higher 
the higher the gain Kh. 

Let us now consider the realizability of an extremum control system 
in the multivariable case.    We will assume that optimization of each 
controlled variable corresponds to optimization of the system as a whole. 
It will be clear from the following that this is not always true.   At the 
present stage we are dealing only with the case when each controlled 
variable can be optimized in the previously explained sense and when 
optimization of all the controlled variables corresponds to optimization 
of the system as a whole. 

Now suppose that the disturbances which cannot be measured are 
applied to the controlled object in each variable.    We thus obtain a 
configuration shown in Figure 7.10, which is the i-th subsystem of the 
multivariable control system. 

The behavior of the i-th controlled variable is described by the following 
set of equations in Laplace transforms 

X, = KuWu{p)\Y*,-Y» i-y'il (7.64) 
yj =1^3, (/,)(*, + *„), (7.65) 

Xu=Wul(p)Yt, (7.66) 

r, = K„i-K«, (7.67) 

Y'„=>Wn(p)Xi, (7-68) 

197 



y^i = w,(p) *i + fi+2a„(/>)K0 (7.69) 

Eliminating the variables V',, Xu, Xt, Y,, Y'm between (7.64)-(7.69), we 
obtain 

W+KuVu(p) W3l(p) W3l(p) Vul(p) + KuWu(p) W3l(p))Yoa , ± 

^(p)^(p)Wttl(p)^aik(p)Y0, 

= KuWn(p) W3i(p)YrcU+ W2i(p) W3t(p) Wut(p)f1 + 

+d+wu (p) w3l (p)Kd[wit (p) wu ,{p)-%*$] y„ (7.70) 

or, dividing both sides by Wzi(p), 

Hl + KuWu(p) W3t(p))Wul(p) + KllWu(p)]Yolll + 

+W»V) ^^(P)^nyom^KuWuip)Yrc!1+Wvip)Wul(p)fi+ 

+a + wi, (P) r„ o») Kd[wa, (p) - wi^] yoa. (7.71) 

Putting j- 1,2,..., n, we obtain a complete set of equations describing the 
multivariable control system. 

y.   1        MW       -     {       ^M 

FIGURE 7.10.   The use of an ideal plant. 

As we have previously shown the system can be optimized in relation 
to each controlled variable; the disturbances f{ together with the extraneous 
outputs provide the noise which interferes with the given variable.    The 
optimum is thus attained if the extraneous outputs yout »and the disturbances 
ft are successfully eliminated.    We see from (7.71) that noise rejection 
can be achieved if 

1 (a)     W„i(p): W,,(p) 
and 

(b)   Ki-+oo, the system of course remaining stable as a whole. 
Making use of conditions (a) and (b), we find from (7.71) 

rtsw+r"W]y--^w^ 
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[ wu (p) w3l (p) + w2i (P) wu (p)] r „,- = wu (p) wv (p) rref,, (7.72) 

' put I W„(p) 
y«ii    w2i(p)+wn(py 

An equation of this kind was derived in our previous analysis of optimiza- 
tion of a single-variable system.    This single-variable case is of some 
interest as a variant of multivariable systems where noninteraction is 
attained as a byproduct of self-optimization of each subsystem, which by 
assumption corresponds to optimization of the system as a whole.    In point 
of fact,  such self-optimization is feasible only if noninteraction and 
invariance are ensured simultaneously. 

§ 7. 7.    DISTURBANCES APPLIED AT VARIOUS POINTS 
OF THE FORWARD PATH AND IN THE FEEDBACK PATH 

Consider the case when the disturbances are injected at various points 
along the forward path, with the exception of the input, and also along the 
feedback path.    This case is illustrated in Figure 7.11.    The results of 
§ 7. 2 clearly suggest that by increasing the gain of the forward path 
one can reject all the noises acting in that path and compensate the 
contribution from the extraneous controlled variables.    Now, if the plant 
characteristics are altered in response to these disturbances,  the resulting 
structure is equivalent in its properties to an adaptive system.    The 
unsolved problem is noise rejection in the feedback path, but here we can 
apply the conditions of structural noise rejection derived in Sec. 7. 2. 

FIGURE 7.11.   Noise in forward and feedback paths 

Structural noise rejection can be attained as follows (Figure 7.12).   An 
amplifier is connected in the feedback path, immediately after the output; 
its gain can be made sufficiently large (theoretically infinite).   Another 
amplifier with gain KW close to zero is connected after the noisy feedback 
element,  so that 

K\h T?—=1- 
*2h 
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Simple calculations show that Kih-*-°°, K21,- 
feedback path is effectively suppressed. 

-0. and KihK2h= 1 the noise in the 

K, "l 

-H2H2>- > 
T T 

F(p) 

<   -1 

K*     V,       U 
>   ■*-   >       > 

L    1 
Kh 

< 
Kh 

FIGURE 7.12.   Illustrating noise rejection in the feedback path. 

In conclusion of this section let us review the results of §§ 7.2 and 7. 6. 
We have dealt there with noisefree input signals.    The noise rejection 
techniques have been essentially developed for cases when the noises are 
not amenable to direct measurements.    The use of the ideal plant in 
§ 7. 5 enabled us, besides synthesis of Wu (p), to ensure stabilization 
with the aid of simple passive circuits, whereas the method presented 
in this section requires special amplifiers that realize sufficiently ideal 
derivatives. 

The system properties can also be improved in the case of noisy input, 
and this possibility is actually considered in § 7. 5.    Indeed if noise 
rejection follows the method of § 7.2, an increase in gain enhances 
the noise which is delivered to the input together with the reference signal. 
From this point of view,  if noise is injected together with the reference 
signal,  the suppression of all other noises that incidentally enter the 
system requires unambiguous isolation of the original noise, and this is an 
obvious shortcoming of the method.    If an ideal plant is used,  and especially 
if the spectral composition of noise is different from the spectral composi- 
tion of the reference signal, the parameters of the stabilizer Ws{p) can be 
chosen so as to minimize the input noise.    When the input is a mixture 
of the reference signal Kref, and noise flnj,  calculations along the same 
lines as before give the following expression for the output in a system 
using -an ideal plant: 

WAP) w,(P) 
W3 (/>) + W2 (p) '•«' "I" Wa (p) + W2 (p) tin (7.73) 

If W3(p) is appropriately chosen and the spectral composition of the 
disturbance is taken into consideration, the contribution from the second 
term in (7.73) can be minimized. 

§7.8.    SOME ADDITIONAL TOPICS AND ESTIMATES 

In the preceding discussion, a realizable structure was one that 
remained stable at infinite gain.    The concept of realizability used in 
current literature has a broader sense, and our analysis should be corre- 
spondingly augmented.    Moreover, when asymptotic methods are applied 
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(in our case the asymptotic behavior constitutes transition to the limit 
m-vO orK-voo,  one always has to consider to what extent the theoretical 
results are applicable in practice,  when the coefficients after all remain 
finite,  and what errors are incurred in the asymptotic approximation. 
We therefore first have to consider the following problems. 

1. In control systems (as in any dynamic system),  there are always 
some parasitic,  spurious parameters which at high gain may have a marked 
influence on system dynamics.    Two aspects of this question should be 
considered: 

(a) Will small parameters have a marked influence on system behavior 
if they can be made quantitatively as small as desired?* 

(b) How are we to determine the quantitative effect of small but finite 
parasitic parameters on system dynamics ? 

2. In real systems the gain cannot be made arbitrarily large: it may be 
raised to a certain large but nevertheless finite value.    What constitutes 
"sufficiently large" gain,  or in other words what are the numerical values 
of gain for which the results obtained assuming infinite gain are applicable ? 

3. What is the effect of certain kinds of nonlinearity on system behavior? 
We solve these problems by following the same procedure as before: 

first we consider single-variable control system and then generalize the 
results to multivariable configurations. 

1.   Quantitative estimation of small parameters 

Let an automatic control system be described by an iV-th order differential 
equation.    Moreover suppose that the system incorporates n small para- 
meters,  each increasing the order of the equation by one.   The characteristic 
equation that corresponds to the degenerate differential equation obtained 
when the n small parameters are ignored is an algebraic equation of 
(N — rc)-th degree,  and its general form is 

«„/,"-»+ «,/>"-->+ ... +aN_n = 0. (7.74) 

Let the roots of equation (7.74) be zu   i= 1, 2, . . ., N — n.    Then 

<Vf-" + a,z"-"-1+ ••• +aN_„ = 0. (7.75) 

Introduction of the small parameters has a twofold effect.    First, the 
roots of the degenerate equation (7.75) are altered; second, n new roots are 
added, which tend to infinity as the small parameters approach zero. 

Let the introduction of small parameters alter the i-th root of the 
degenerate equation by A«,-.    The coefficients of the degenerate equation 
acquire corresponding increments Aa,- and A' new terms with the coefficients 
Aft( appear in the equation.    The complete characteristic equation with 
small parameters is thus written in the form 

Ab0(zi + tlzf+Abi(z1+tef-*+ ... + (a0+Aa0)(z,+Azif-" + 
+ (a1 + AaI)(«lH-AaJ)"-"-,+ ... +aw_. + Aaw., = 0. (7.76) 

*     It is here that we encounter the problem of coarse and noncoarse systems (in the sense of A.A. Andronov) 
in all its acuteness. 
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Expanding, we obtain 

+ Ml[z?-, + (N-\)z°-*Azi + {N-1)
2
{

l
N-2)zl>,-:>Az}+...]+... 

... +a0zJf-» + o0(W-«)«J'-»->A2(+ ... + Aa0zf-» + 

+ Aa,(JV-»)af—»4*,+ ... +aN_n+AaN_n = 0. (7.77) 

Making use of (7.75) and ignoring terms of second and higher orders of 
smallness, we obtain 

AVf+A*i2*->+ ... +a02f-" + 
+ Aa12f-»->+ ... +Aaw_, = q/(z)|      A*,, (7.78) 

where (j>'(z)|z=Z( is the derivative with respect to 2 of equation (7.75) at 2 = 2,. 
From (7.78) we obtain 

Az        Ayf+AVr'+ ... + Aa0^-" + Aa1^-"-1
+ ... + AaN_„ 

This expression relates the root increment to the increments of the 
coefficients to terms of second order of smallness. 

If the numerical values of the small parameters and the roots of the 
degenerate equation are known, the error in the roots calculated from the 
degenerate characteristic equation can be found using relation (7.79).    If 
the roots of the degenerate equation are real,  relation (7.79) gives the 
error in the decrements of damping; if the roots are complex,  relation (7.79) 
simultaneously gives the error in the damping decrements and in the free 
oscillation frequencies of the system. 

The problem can be approached differently.    Let the permissible error 
be known (e.g,,  in percent of the root of the degenerate equation); our aim 
is to find such numerical values of the small parameters that the error 
incurred when these parameters are omitted does not exceed the permissible 
error. 

Let the permissible error be B,  so that 

Azt = ez,. 

The numerator in the right-hand side of (7.79) is a known function of the 
small parameters m.    Putting/(m)for this function, we rewrite equation (7.79) as 

f(mo) = eZi<P'(z)Lv (7.80) 

Here m0 is the largest of the small parameters. 
The error naturally does not exceed the permissible value e if, for any m, 

m<m0. (7.81) 

In most cases the effect of the small parameters on system dynamics 
can be quantitatively determined by considering only the errors in the roots 
of the degenerate equation,  although strictly speaking the change in the 
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position of the roots generated by the small parameters should also be 
estimated. 

We have previously shown that when the small parameters approach 
zero,  the roots obtained from the auxiliary equation tend to infinity.    In 
reality, however, the small parameters are finite quantities,  and the 
corresponding roots are therefore located not at infinity but at some 
finite distance from the origin. 

For purposes of evaluation of the transient process via the degenerate 
equation it is desirable to have the real roots generated by the small 
parameters considerably farther to the left from the imaginary axis 
than the leftmost root of the degenerate equation; alternatively,  the 
absolute value of the complex root calculated with allowance for the small 
parameters should be substantially greater than the absolute value of the 
complex root of the degenerate equation.    Then, all other conditions being 
equal,  the transient components contributed by the small parameters will 
have a negligible influence on the overall control curve. 

If there are n small parameters,  the auxiliary equation for m-t-0 has 
the form 

C5 + Cl9"->+ ... +C„ = 0. (7.82) 

The small parameters modify (7.82) as follows: 

(Co + AC0)<7» + (C + ACI)(?»-1+ ... +C„ + AC„ = 0. (7.83) 

Proceeding along the same lines as before, we obtain an approximate 
expression for the error in the j'-th root due to the small parameters: 

where <p'(?)!«=», is the derivative with respect to q of (7.82) for q^q,.    If q{ 

is known,  the error in the root can be found.    The actual value of the root 
is given by the equality 

Pi-^^SL. (7.85) 

The relations of this section are suitable for the determination of the 
numerical values of small parameters which raise the degree of the 
equation at most by one.    For certain structures the small parameter is 
the reciprocal gain of the stabilized section of the control loop, and our 
relations can thus be applied to determine the gain.    Seeing that 

m = -J—, (7.86) 
A   St 

we write (7.85) in the form 

Pi-=(qt + bq,)Kn. (7.87) 

If K * is known, the true value of the root can be found from (7.87). 
The reverse procedure is more convenient in practice: first find the 
roots of the auxiliary equation with m = 0,  then assuming a certain 
permissible error &q use (7.87) to determine the gain Kx. 
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2.    Coarseness in the sense of A.A. Andronov 

Let each closed-loop subsystem of the control system have a certain 
number of small parameters (in general,  different subsystems need not 
have the same number of small parameters).    The starting set of equations 
can be written in the form 

[D, (p) Mi (p) Fi (mp) + Ki]Xl = - /f.'Af, (p) X0, 

[D2 (p) M2 (p) F, (mp) + K2] X2 = ~ K'2M2 (p) Xu 

[D„ (p) Mn (p)Fn (mp) + K«\ Xn = -K'Mn (p) *„_,. 

(7.88) 

Here Ft(mp) is a polynomial whose coefficients are functions of the small 
parameters m; Dt(p), Mt(p), Ki and K'I are the operators and gain factors of 
the controlled object and the controller in various closed-loop subsystems. 

Suppose that the parasitic parameters are the time constants of the 
serially connected aperiodic elements in the loop.    Then 

Fi (mp) = m'Fe (p) + m
p-V>_. (p)+ ..., (7.89) 

where p is determined by the number of small parameters introduced. 
Expression (7.89) is quite general,  provided that each small parameter 

increases the degree of the equation at most by one. 
In this case, however, the degree of the general characteristic equation 

increases by an amount which is equal to the number of small parameters 
introduced.    The system is stable for m-*-0 if the auxiliary,  as well as the 
degenerate,  equation satisfies the stability conditions.    If the parasitic small 
parameters enter the system in such a way that they are equivalent to a 
chain comprising an appropriate number of aperiodic elements connected 
in series,  the stability conditions are automatically satisfied for small m. 
In general, the small parasitic time constants can always be so adjusted 
that, if sufficiently small, they will not affect the stability of the system. 
Hence it follows that systems belonging to this class are coarse in 
A.A. Andronov's sense. 

§ 7. 9.    DETERMINATION OF GAIN 

The method developed in the previous section for the determination of 
small m and high K is universally applicable only in those cases when the 
small parameters raise the degree of the equation at most by one. 

Before this method can be applied,  the roots of the degenerate and 
the auxiliary equation should be found.    Determination of roots,  even 
those of the degenerate equation,  often involves considerable difficulties, 
since the equation may be of a fairly high degree.    Therefore, as a 
supplement to the general method, which is quite useful if the effect of 
small time constants on system dynamics is to be found, we describe 
in this section some methods for the determination of gain in a number 
of practically significant cases.    We also consider the permissible margin 
of variation of this gain for which the previously derived rules of structure 
synthesis hold true. 
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1.    Gain entering linearly the characteristic equation 

In the simplest structures which retain their stability at high gain, 
the gain,  which may vary between wide limits without causing instability, 
is a linear component in the equation.    A specimen structure of this kind 
is shown in Figure 7.13. 

K,Tf KgTf igig 

p* > * > *1 r*   >  *   > 

L— 2 1 
■ 

FIGURE 7.13.   A structure with a real stabilizer. 

Ki&nd Ki are the gains that can be varied between wide limits.    The 
characteristic equation is 

fl (1 + T,p) (l + xp) + KXK, [T/> (1 + T3p) (1 + 7» + 
+ Ar3Ar4(l + T/,)] = 0. (7.90) 

The limits of KiKi for which the system remains stable can be found 
without difficulty.    If all the other parameters are known, we plot the 
D -decomposition curve in the K1K2 plane.    The equation of the D-decomposi- 
tion curve in this case is 

K,K2 — — 
nii+w(i+« 

rja (1 + T,ja) (1 + TJa) + K3K, (1 + ijm) ' (7.91) 

The curve plotted from equation (7.91) is shown in Figure 7.14.    The 
numerical values of the parameters are listed in Table 7.1. 

\mK,Kg[ 

TABLE 7.1. 

r,, sec T2, sec 7"3, sec 7",, sec T, sec K,K, 

0.1 0.01 0.34 0.1 0.5 15 

-aoir 

FIGURE 7.14.   Illustrating the determination of   KiKi 
limits. 
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We see from Figure 7.14 that the system is stable in two KiKz intervals: 
the first interval extends from KiKi= -0.6 to +0.7 and the second from 
KtK2 = 32 to +oo.    The second range determines the infinite-gain stability 
of the system.    The least value for which all the preceding conclusions 
hold true is obviously KiK2= 32.    In general,  the characteristic equation 
for the structures considered in this subsection can be written in the form 

QU>) = K„R(p)=*0, (7.92) 

and the crossover values of K„ are determined by examining the stable 
regions of the D -decomposition curve 

K« TW- (7.93) 

One of the stable regions of necessity extends to infinity. 

2.    Gain entering nonlinearly the characteristic equation 

Quantitative estimation of gain in this case is a much more complicated 
undertaking,  especially if we are interested in the whole range and not in 
some single gain value from the stability region.    The problem will be 
solved in application to structures with infinite-gain stability. 

Since the system remains stable as the gain is increased, there exists 
a whole range of gain values where the system is stable.    If the high gains 
are replaced by their reciprocals,  we obtain a certain region of small 
quantities where the system is stable.    This transformation will be found 
useful in what follows. 

We have previously shown (see Chapter Three) that the characteristic 
equation of this class of structures with n high gains can be written in 
the form 

m"FN0 (p) + m-'FNl (p) + m-*FNa (/>)+... 

■■■+mFNn-l(p)+F»„(P) = Q< (7.94) 

where m=l/K.    If the high gain parameters are not equal numerically,  the 
characteristic equation is nevertheless written in the form (7.94), but the 
coefficients of the polynomials depend on some coefficients r\t which express 
the relationship between Kt and Ki. 

The equation of the ^-decomposition curve for a sequence of descending 
powers of the small parameters m can be written as 

f«,W|      ,      M«[ F„U<- 

■ • + «H 

We see that the small parameter to the i-th power is followed by the 
equation of the D -decomposition curve in the plane of that parameter, 
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provided that all the other small parameters and their D-decomposition 
equations are ignored.    Putting 

= 0,(/B), (7-96) PNl (» 

we rewrite equation (7.95) in the form 

m" = D„ (yco) (/»»-> - £>„_, (yw) (m»-2- D„.2(/to) («»-»- 
-D„_8(»... i«-D(yto)]. (7.97) 

We have thus obtained an equation from, which the limiting values of the 
reciprocal gain can be determined. 

3.    Initial conditions 

We have previously shown that for sufficiently high gain of the stabilized 
elements,  the transient is fully described by the degenerate equation.    These 
results were obtained assuming zero initial conditions for the transient. 
In what follows we will show that the same conclusion is applicable in the 
general case of nonzero initial conditions.    (The problem of initial conditions 
is moreover important because the results can be applied when the system 
performance is assessed in terms of the degree of stability. *) 

Let the initial conditions be 

*(<)|(=o = *o and *<'>(/)|,=0 = 0     (i=l,2, ... /V-l). (7.98) 

The roots of the characteristic equation are designated zu z2, ..., zn. 
Since the system is stable, zt  is either a negative real number or a 

complex number with a negative real part.    The free transient component 
is expressed by the equation 

JC(0=2iV''. (7-") 

where At are integration constants. 
To determine the jV integration constants,  we draw up N equations for 

the N initial conditions.    Making use of (7.98), we obtain from (7.98) 
for t = 0 

A, + A2+ ... 4-^ = ^0, 
z1Al+z2A7+ ... +zNAN = 0, 
z\A + z\A,+ ... +2^=0, (7.100) 

Tsypkin, Ya.Z. and P. V. Bromberg.   O stepeni ustoichivosti lineinykh sistem (Degree of Stability 
of Linear Systems). —Izvestiya AN SSSR, tech. sei. div., No. 12.   1945. 
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The determinant of (7.100) is 

A = 

JV-l      JV-l 
'1 z2 

JV-l 
ZN 

(7.101) 

The ;'-th integration constant is thus given by the equality 

(7.102) 

Ai is the determinant (7.101) where the i'-th column has been replaced by 
the right-hand sides of equations (7.100). 

Suppose that the system has n small parameters,  each increasing by one 
the degree of the equation.    Then n out of the total of N roots recede to 
infinity as the n small parameters approach zero, and the other N — n roots 
remain finite (in the limit they are equal to the N — n roots of the degenerate 
equation). 

The Laplace theorem is now applied to expand the determinants A and A; 
in minors of (N — n)-th. degree.   Allowing n roots to recede to infinity,  we 
see that 

lim A'i=Ai, (7.103) 

where 

and 

t = l, 2, ..., N — n; j=N—n+l N 

iim A'=0, 
2. -Wt*>       ' 

(7.104) 

where A] is the integration constant determined from the complete equation, 
At the corresponding constant determined from the degenerate equation. 

Thus, when the roots generated by the small parameters become 
sufficiently large,  the integration constants obtained from the degenerate 
equation are sufficiently close to the corresponding integration constants 
determined from the complete equation; the other integration constants 
approach zero. 

Hence it follows that when the ignored parameters are sufficiently small, 
the transient derived from the degenerate equation is sufficiently close 
to the transient derived from the complete equation. 

Consider a different set of initial conditions: 

x(t)\t=o = xo< x'(t)\t=0 = xl (7.105) 

The preceding results are fully applicable in this case too,  provided 
that At and all A} are finite.    This can be easily verified by direct computa- 
tion following the procedure outlined above. 
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§ 7. 10.    THE EFFECT OF SOME NONLINEARITIES 

The preceding results are fully justified for systems described by 
linear differential equations with constant coefficients.   As we have 
remarked in the previous section, the gain is always finite in practice 
and the parasitic time constants can be made arbitrarily small.    The 
evaluation methods developed above could have applied in this case, but 
unfortunately,  in real systems,  some elements may be nonlinear.    We 
consider here some kinds of nonlinearity and try to establish how they 
affect the structural properties of systems of this class. 

For the sake of simplicity, we again start with the analysis of a single - 
variable system.    The results are then readily extended to multivariable 
control systems. 

dx 
The nonlinearity considered in this section is such that -j£- > 0 at all 

points of the steady-state characteristic ( xv is the input and x2 is the output). 
A suitable example of these nonlinearities is provided by magnetization 
curves of electric motors, and other similar characteristics. 

We will also consider the effect of these nonlinearities on the dynamics 
of systems with nonlinear stabilized elements.    It will be assumed that 
the gain of the closed loop formed by the nonlinear element and the 
stabilizer may vary between wide limits. 

FIGURE 7.15.   Estimating the effect of nonlinearities. 

Figure 7.15 is a block diagram of an W-element control system with 
n nonlinear elements whose steady-state characteristics satisfy the 

conditions -^ >0.   A linear amplifier is connected in series with each 

nonlinear element, and each pair of this kind is embraced by a stabilizer 
Fnx(p).    The resulting structure is stable at infinite gain. 

The equation of a single loop comprising a nonlinear element, an 
amplifier, and a stabilizer has the form (see Figure 7.15). 

■ dXt + QdP)Xl+l = K^-[X,-F,l(p)XM] 

[Q, (/» + K, %L Fnt (p)] Xl+l = K,Zfax, (7.106) 
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where p = -§f.    Here Kt is the gain of the linear amplifier,   d^'  the gain of - 

the nonlinear element, Fni(p) derivatives from first to (9, -2)-th order, 
where q, is the degree of the self-operator Qt(p) of the stabilized element. 

Dividing (7.106) through hy Kt^P- and putting-—±, = mt,  we write 
K'~dxr 

(7.106) in the form 

h/Qi(/>)+AMF'+> = *'- (7.107) 

Here m is a variable and its value is determined by the position of the 
element's working point on the nonlinear characteristic. 

If the number of nonlinear elements is n and the total number of elements 
N, the equation for the N-th controlled variable is 

II [MIQI (P) + Fnt (p)\   II [Qj (P) + Kj\ XN =   fl KjX0. (7.108) 
~~ ' l — tl + l _/=/!+! 

The characteristic equation generated by (7.108) satisfies the stability 
conditions for m,-->-0 (or,  equivalently, #<-»«>) if and only if the degenerate 
characteristic equation 

jf,F-,(p) ,n IQAP)+KI\=O 

and the auxiliary equation of first or second kind satisfy the stability 
conditions. 

If these conditions are satisfied,  then for sufficiently small m<m0 the 
transient is fully determined by the degenerate equation 

ilf-tf) ,11  \Q,(j>) + Ki\XH=   II   KjXt. (7.109) 

Thus,  if the gain can be made sufficiently large,  so that L = m<OT 
K'~dXT 

nonlmeanty of the kind being considered will have virtually no influence 
on the process. 

We have established that the system is necessarily stable in the small. 
Since for nonlinearities of this kind the equivalent gain /39/ is represented 
by a real segment, the gain Kt and the stabilizer parameters can be so 
chosen that the gain-phase plot does not intersect with this segment,  or 
else the intersection is at very low gains and the system can be regarded 
as stable on the whole. 

Under these conditions it only remains to find the numerical value of m, 
and as long as mj<m0,  the nonlinearity can be ignored. 

Stability at high Kt is ensured by introducing ideal derivatives of up to 
(g-2)-th order.   As we have already remarked,  the generation of these 
derivatives often involves considerable technical difficulties.    Instead of 
ideal derivatives one therefore normally uses stabilizers with a transfer 

function j^~.    We thus proceed to consider the effect of nonlinearity on 

the dynamics of systems with j^ stabilizers.    The self-operators Qt(p) 
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in this case are at most of second degree.    The equation of the i-th 
element is 

Qi(p)Xi+1^=Ki^(Xl-Xd' (7.110) 

where Xi is the stabilizer output. 
The stabilizer equation is 

(\+%p)X', = xpX1+l. (7.111) 

Eliminating ^'between (7.110) and (7.111), we find 

[Qi(P)^+xp)+Ki^xp]xM = Kl(^+xp)^-Xi. (7.112) 

Differentiating in the right-hand side of this equation P = -^j-, we find 

[Q, (/>)(!+ V) + Kt Ä- xp] XM = K, ^p- (1+ xp) X, + KtxXt ± {^-), 

or 

[Q, (P) 0 + xp) + K, ^ xp] Xl+l = [Kt ^f (1 + xp) + Ktxp ± ffj£-)] X,.   (7.113) 

Dividing (7.113) through by Kt  rf^
+l and putting as before 

1 

we find 

\miQl(P)^+xip) + xlP]X,+l =(\+xp)Xi + ^li--^{^f)xt.       (7.114) 

In distinction from the case of stabilization via ideal derivatives, the 
right-hand side of equation (7.114) contains a linear term (l+tp)X;, which 

does not add to our difficulties,  and a term dependent on       '+l.    The 

nonlinear effect cannot be assessed unless the last term in (7.114) is 
estimated. 

Figure 7.16 is the free-running characteristic of an electric motor; 
this is a typical plot of nonlinearities with which we are concerned.   Over 

sections ab and cd we have      .'}' = const, and when the working point of 

the nonlinear element is situated on these sections of the characteristic, 
the last term in (7.114) vanishes.    It remains to consider the case when 
the working point is on the section  be.    If the characteristic is smooth 
and well-behaved over this section (as is the case for most real elements), 
the last term may again be ignored,  since it will slightly alter the 
coefficients of the equation without changing its degree.    Thus,  if the 
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gain of the linear amplifier is sufficiently high,  the nonlinearity virtually 
does not affect the dynamics of the system. 

4>70S 

inxj 
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FIGURE 7.16.   A saturation characteristic. 

Strictly speaking, the system should have been tested for stability 
in the large.    V.M.  Popov's method /20/ provides a logical approach 
to this problem.    However,  there is no need to proceed with the general 
test for the very simple reason that the gain-phase plot of the open-loop 
system, which is needed for testing the stability in the large by Popov's 
method,  cannot be constructed unless the numerical values of the system 
parameters are known.   A qualitative gain-phase diagram do.es not yield 
any additional information,  since in this class of structures the linear 
part may have a virtually arbitrary characteristic. 

In this section, as in § 7.8, we have dealt with single-variable 
systems, but the results are readily extended to the multivariable case. 
An example of this generalization is provided by the preceding analysis 
of an n-loop system with nonlinearities. 

§ 7. 11.    SYSTEMS WITH A RELAY ELEMENT 

The use of relay elements in control circuits is of considerable interest 
for some problems discussed in this book.    To avoid any misunderstanding 
we wish to stress that this is not an exposition of the theory of relay 
systems.    Our interest in elements with a relay characteristic is due 
at least to three factors.    First, the relay element has an infinite gain 
when the deviations are sufficiently small.    In this sense any amplifier 
with an arbitrarily large gain and a zero-slope characteristic in the 
saturation zone can be simulated by a relay element and,  conversely, 
a relay element can be replaced by an amplifier with such a characteristic. 
Second,  it has been demonstrated in a number of studies on optimum 
control (see, e.g.,  /54/) that an element with a relay characteristic is 
an indispensable component of optimum control systems and as such of 
considerable interest in our analysis.    Third,  the sliding action of a 
relay system is a fundamental operating mode of the entire class of 
so-called variable-structure   systems  /8/, which have recently 
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become quite popular in the theory of automatic control.    It has been shown 
in the literature /8, 71/ and will be demonstrated in the following that a 
sliding-action relay system is equivalent in some of its properties to an 
infinite-gain system. 

We will consider two operating modes of systems with relay elements: 
(1) stable equilibrium, and (2) sliding regime. 

1.    Stability of relay systems 

Here we are concerned with the stability of equilibrium under small 
deviations from the steady-state value (stability in the small).    Stability 
as such is interpreted in the conventional sense. 

The relay characteristics depicted in Figure 7.17 show that an equilibrium 
position which includes x(t)= 0 is obtained both in the case shown in 
Figure 7.17a, where the equilibrium point is 0, and in that shown in 
Figure 7.17b, where 

X — K0<X<X + H0. 

Here *(^)is the input signal of the relay element. 

& in 

FIGURE 7.17.   Relay characteristics: 

(a) an ideal relay, (b) a. relay with an insensitive zone. 

We are particularly interested in the case x= 0 (Figure 7.17a).    The 
stability of blind-zone relay systems (Figure 7.17b) is determined by the 
linear part of the system*,  since for *(0) —x<*<.x:(0) <j:(0)+xthe relay 
element does not affect the linear part and the entire configuration behaves 
as an open-loop system. 

The analysis of stability will be based on the characteristic equation of 
the linearized system.    Figure 7.18 is a block diagram of a relay control 
system.    The entire linear part is represented by a single block with a 
certain transfer function, and the relay element is depicted separately. 
It is implied that the linear part of the system is structurally representable 
as a one-loop circuit without local (internal) feedback.    The equation of 
the linear part is found without difficulty.    Let us consider the relay 

*     Tsypkin, Ya.Z.   Teoriya releinykh sistem avtomaticheskogo regulirovaniya (Theory of Relay Control 
Systems). — Gostekhizdat.   1955. 
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element in some detail.    The relay characteristic (Figure 7.17) is 
discontinuous and nondifferentiable at the origin.    The very applicability 
of the method of small deviations and of the variational equation therefore 
requires special proof.    The variational equation can be shown to apply 
with the aid of the results derived by Pontryagin and Boltyanskii /53/; 
physical arguments will be found in Tsypkin' s book mentioned in the 
footnote on the previous page.    Now, the equation of the relay element 
(Figure 7.17a) is 

--®(x)Xi*, (7.115) 

where 

©(*) = 
+xa for   ^ln>0, 

for   xto < 0. (7.116) 

The characteristic (7.115) can be replaced by a continuous curve which 
has a finite derivative at the origin, O'(0)^= oo (Figure 7.19).    The real 
characteristic is then obtained from that shown in Figure 7.19 by letting 
the angle ß approach 90° and <D'(0)->-oo.    The variational equation of the 
relay is thus replaced by the equation of an inertialess amplifier of 
infinite gain: 

= ®'(0)xta, (7.117) 

where 
®'(0) = Kc = °o. 

The structural diagram of the system corresponding to this variational 
equation is given in Figure 7.20, where the relay element has been replaced 
by an infinite-gain amplifier.    The equation of the entire system can now 
readily be written. 

a.» W(p) >>* 

' ' 

—*- 
■* 

FIGURE 7.18.   A block diagram of 
a system with a relay. 

FIGURE 7.19.   Illustrating the transition 

#,.->■ oo. 

To avoid complications with stabilizers, we first consider a system with 
a single-loop linear part.    The transfer function of the linear part is 

Q(P) 
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The transfer function of the entire closed-loop system (see Figure 7.2 0) 
is then 

Q(P) KK,. 

1 + 
Q(P) 

Q(P) + KKC 

or 

The characteristic equation is thus 

Q(p) + KKc = 0 

•i-Q(/>) + AT=0. 

(7.118) 

(7.119) 

It directly follows from (7.119) that the system is unstable if Q(p)is of 
higher than second degree.    When Q(p) is of first or second degree, the 
system is stable if 

4>0°rT>a 

Both conditions are satisfied in our case provided that the coefficients 
of p and p2in Q(p)are positive,  since  Ai= 0. 

Olp) 

?v* 9(p) V* 

' 
i 

1 

*c 

2W2W ^>   ■+« V   ^/      s     » 

L < J 
fn,(pj 
fn2(P) 

: 

H 
-A 

FIGURE 7.20.   The equivalent 
circuit. 

FIGURE 7.21.   Illustrating the stability 
of a relay system. 

Any additional finite time constant, however small, will render the 
system unstable.    Therefore, in practice,  configurations like the one 
in Figure 7.2 0 are unstable in the small. 

Let now Q(p) be of higher than second degree in p.   A stabilizer is needed 
to make the system stable.    It is clear, of course,  that no stabilizer will 
do the job unless the relay element is also included in the stabilized loop. 
Indeed,  Figure 7.21 is a structural diagram of a system where the stabilizer 
embraces only the linear part of the system.    The transfer function of this 
structure is 

/(/») = 

Q(p) 
K fn, (p) 

Q(P) ' f"Ap) + 1 
(7.120) 

l + - Q(p) 
K      Fn, (p) 

Q(p)' F*AP) 
+ i 
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The characteristic equation is obtained by putting the denominator of (7.120) 
equal to zero, thus: 

Q(P)F„,(P) + KF»,(P) + W»AP) = 0. (7.121) 

Dividing both sides of (7.121) by Kc and putting -%- = m, we find 

m\Q(p) Fn, (P) + KF„, (p)\ + KF„, (p) = 0. 

The difference in the degrees of the polynomial in brackets and the 
polynomial KF'„, is determined, as before, by the degree of the polynomial 
Q(p).    This conclusion is not affected if only the linear part of the circuit 
is stabilized,  the relay remaining outside the stabilizer loop.    The only 
way to ensure stability is to let the stabilizer embrace the section that 
includes the relay element. 

Kc Q,(P) 9,(P) 

—<2X2>- » -*-  > 

< 
F„zlp) 

> 

FIGURE 7.22.   A more general case. 

Figure 7.22 is a structural diagram of a control system where the 
stabilizer loop encloses the relay.    In the nomenclature of Figure 7.22, 
we write the closed-loop transfer function in the form 

Ki 
QAP) 

W(P)- 
1 + 

KCK,    F„,(P)    Q2(P) 

Qi (P) ' F»< (P)  

Kr 
K, 

, .   v' Q,(P)    Q*(P) 

Ql(p)     Fn,(p) 

The characteristic equation is thus 

Q. (/>) Q2 (P) F., (p) + Kc [K>Fn, (p) Q2 (p) + KiKiFn> (p) = 0 

(7.122) 

«Qi (P) Q* (P) Fn, (P) + \KxFni (P) Q2 (p) + KiKtFn, (/>)] = 0. (7.123) 

Let the polynomials Fn,(p), F„:{p) and Qi(/>)be of the degree n2, nlt and qu 

respectively.    The system is then stable for m-+0 if 

«2+91— «!<2- (7.124) 
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A system satisfying condition (7.124) is stable in the small if the 
degenerate equation 

KiF„, (p) Q2 (p) + KxKiFn, (p) = 0 

meets the stability requirements and the following conditions are fulfilled: 

-T->0 if n2-Jrql — n1 = \,    . 

or 

lT-^7>0  if «2 + ?1-«: = 2. 

In order for a relay system to be stable in the small, it should be 
structurally stable at infinite gain.   A relay is substituted in the limit 
for the infinite-gain amplifier. 

Q„ (p)  j-n*i r 
K,c 9,(p) "u Qt(P) 
»u H > IT--* <Xrt» h i >\* 

Fm,W 

"nc 
> 

< 

FmifPJ 

< 

FIGURE 7.23.   A system with n relays. 

Let us consider a control system with n relay elements.    This system 
can be made stable in the small with the aid of n stabilizers, which may 
be connected in two alternative configurations.    Figure 7.23 is a structural 
diagram showing the stabilizers connected according to the first configura- 
tion.    We will derive the transfer function of this system assuming small 
deviations.    For the i-th relay and the linear section encompassed by the 

j-th stabilizer of a general kind    "' f , the transfer function is written as 

K(P)- Qi(P) We 

1 + 
KiKd   r«i (P)      Q, (P) fml (P) + K,KC tF   (p) ■ 
QI(P)  

p
mSP) 

(7.125) 

Seeing that there is a total of n relay elements and putting    TT «1 
  Qj(p) 

for the transfer function of the unstabilized section of the system, we 
obtain the following expression for the closed-loop transfer function; 

11 Qi{P)Fm{p) + KlKQ tFnl(p)   11 -QJTP) 
K(p) = —i=L ±!±L 

>+nö7 
KKciFml(p) 

11 <?, </>) Fmi (/>) + KtKc ,F   (p)   M   -QJ<J) 
1-1 i=n+\ 

n Kj (7.126) 
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n*i*.i'..i<rt n*< 
_L=1 >=■"+'  (7.126) 

n [Qi < *> '«i (/>)+^«c ^ w] n ° i(p)+ 
n N 

(=1 >-/i+l 

Dividing the numerator and the denominator in (7.126) by K" and 

putting —j- = rrC, we write 

n^i n ^n^/^) 
nyy>      m-FN(p) + m"-'FNi(p) + m

n-2-FN2(p)+ ...+mFNiiJp) + FNn(p)'        v"        ; 

where 
FN(P) = ILQ!(P)   II Qi{p)Pmi(p), 

1=1 j-n+\ 

FN1(P) = 21KIF„,(P)... 
1 1=1 

■•■       ,      H, Qj(p)FmJ(p)   II   Qy(P). 

FNn(p) = J[KiF„i(p)   II QiM + flKiPmiiP)   ft  AT/. 

Putting the denominator of (7.127) equal to zero, we obtain the character- 
istic equation of the system.    The stabilizers should be so chosen that the 
resulting configuration is structurally stable at infinite gain.    Otherwise 
the system will be unstable.    If the structure is correctly chosen,  stability 
is actually ensured if the degenerate equation FNTI(P) and the auxiliary 
equations of first,  second,  or third kind each satisfy the corresponding 
stability conditions. 

If the gain remains high in the case of large deviations too, the transient 
behavior of the system is determined by the transfer function obtained 
from (7.127) putting m= 0,  i.e., 

n*/ n KjiLrmip) 
K(P)=-, '■'„ '■'+'     '■' = 

TL^nM n Qjw+UKti'rtip) n *i 
(=1 ]=n+\ T=\ j = n+l 

N 

 j = n + l  
n     Fnl(p)        N N 

( = 1       ">' J = « + l / = n + l 

(7.128) 
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In fact we can speak only of some averaged gain, which is determined 
by the ratio of the relay output to input. The higher the input, the lower 
is the averaged gain.    Near the origin, even the averaged gain is fairly high. 

Let us now concentrate on the physics of the process in an «-relay 
system with structural infinite-gain stability.    There are two possibilities: 

(a)   The stabilizer is such that each small parameter m = ~ raises the 

degree of the characteristic equation by one.    In particular,  if the stabilizer 
ratin   ic ratio is 

/(/>) = tp 
1 + tp 

'.«to 1S 

and the relay is inertialess, the forward path of the loop formed by the 
relay and the stabilizer may include only a single element with a first- 
order equation. 

In the general case,  the transfer function of a closed loop comprising 

a linear element -£fe, a relay with a gain Kci, and a stabilizer  /'^ 

written in the form 

If/,*- Q7(P7K"  KficfmliP) 

If there are n such loops, and the total number of elements is N, the 
transfer function is 

* *!*»/''.., (/> ___    Kj 
11 Q, (P) Fmi (P) + K,Ke ,Fnl (p)    11 "5^rt 

K{p)Ba7~£ *'*.>r«v>        1-TT- (7-130) 
+

 |1 ViWmiW + KiKcf^p)  11 'QJTPT 
*    i j=n+l 

The characteristic equation is obtained by putting the denominator of 
(7.130) equal to zero: 

^[Qi(p)Fml(p) + KiKclFnl(p)]   II Q(P)+B.KlKolFml(p)   ft Kj = Q.    (7.131) 
JcB+1 '=1 j=n+\ 

Dividing (7.131) through by UK.KC and putting     >_ = ««, we assume 

that Ki and Ki=K are related by K{=mKi=i\tK and thus write (7.131) in the form 

«"fiv, (p) + m- iFNt_, (p) + m°- 2/=V,_2 + ... 

... + «fiv-»+i(/>)+fi\r,-ii(/>) = 0. (7.132) 

Here N0 is the degree of the characteristic equation,  equal to  2 1i + __ n2i, 
/-l   -        —1 

and the subscripts of F designate the degree of the corresponding polynomial 
The transfer function (7.130) for this case takes the form 

^N.(P) + ^-^_l{p)+ ... +mFNt_n+1(p) + FN_n{p) ■ {7-133> 
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(b)   The stabilizer is such that each small parameter m = ^-^- increases 

the degree of the equation by two.    For the particular case of a stabilizer 

with a transfer function { Tf   ■ and an inertialess relay,  the forward path of 

the loop formed by the relay and the stabilizer may include a single 
second-order element (e.g., an oscillator) or two first-order elements 
(aperiodic or integrating). 

In the general case, making use of the notation in (a), we write the 
characteristic equation in the form 

m"FN(p) + m"- >fiv.-2 (/>)+/»"- 2FN-*(P)+ ■ ■ ■ + fiv-s» (P) = °- (7.132)' 

The corresponding transfer function is 

^U',~*V«M + «,-V«W+'",""V4W+-+Vi.W' 

A relay with the unit step characteristic shown in Figure 7.17a is stable 
only if the input signal is zero ( x= 0).    Integrating systems are therefore 
assumed in both cases, which are in equilibrium for x= 0. 

2.    Sliding mode 

Sliding-action relay systems have been investigated in considerable 
detail /ll, 17, 13/.    The physics of the sliding mode has been established 
and the relationships to be satisfied for a system to operate in the sliding 
mode have been derived. 

We are interested in sliding action in connection with the following 
problem.    The use of structures with infinite-gain stability always raises 
the question of how the infinite gain is to be realized.    In the great majority 
of cases the gain values for which all the preceding results hold true are 
readily attainable, as they fall in the range of common gain values of 
control systems (300 — 1000). 

We have shown for saturable nonlinearities with a positive slope factor 
in the saturation zone that introduction of an amplifier of sufficiently high 
gain in series with the nonlinear element transforms the system to a 
high-gain structure.    In the case of a relay characteristic, the slope 
in the saturation region is zero.    It has been shown in the literature /71/ 
and will be demonstrated in the following that,a sliding-action relay system 
is equivalent to an infinite-gain linear system. 

We now proceed to synthesize a structure which will be equivalent to a 
linearized system and derive the equations that describe its dynamics. 
Figure 7.24 is a block diagram of a relay system. 

Nomenclature: 
K(p)= the transfer function of the unstabilized section; 
F,(p)= the stabilizer transfer function; 
R.E.= a relay element with an ideal characteristic (without an insensitive 

zone); 
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*,(/»)- the transfer function of the stabilized element in series with RE- 
YKi (/>)- the transform of the reference signal; 

Y(p)= the transform of the output; 
*(/>)= y«t{p)-Y(p); 
Z(p)~ the transform of the stabilizer output. 

KJP) 
X(p)        U.E. K,W 

Zip) 

XfP) 

rip) 

> 
yip) 

UfL 
7 

rip) 

«=Ha*T> 
K(P) 

> 

FIGURE 7.24.   Illustrating the sliding-action conditions. 

np) 
—^- 

FIGURE 7.25.   A linearized system. 

Let the system operate in the sliding mode.    Then, as was shown in 

, /'.the rflay element oscillates at infinite frequency with infinitesimal 
amplitude.    The relay input x(t) can be taken as zero,  so that 

xV)=yrcf(f)-y(t)-z(t) = o, (7.134) 

and this is equivalent to an infinite-gain relay.    The linear equivalent of 
this relay system is thus a structure where an infinite-gain linear amplifier 
is substituted for the relay element.    The degenerate part of this linear 
system is equivalent to a sliding-action relay system. 

Structurally, the linearized system can be depicted as in Figure 7 2 5 
We see from the diagram that the input signal in this case is 

The equation for *,(/) in Laplace transforms is 

^'«l-TITO--2,<Ä-W» 

(7.135) 

r.<j>) 

or 

^^""^■WM-^^I- (7.136) 

T^ ™f .!qUation for the outPut *(0 ^ obtained by inserting for Xl(t) in 
(7.136) its expression from (7.135),  thus: 

*M®=T*$huF*ty~w (7.137) 

The preceding considerations are meaningful if the system remains 
stable,  i.e.,  if the conditions of infinite-gain stability are fulfilled. 
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Our analysis shows that continuous sliding action is possible if at any- 
time the external impulse *<(0 varies at a slower rate than the internal- 
feedback impulse z(t),  i.e.,  if 

|i,(0KI*WI. (7-138) 

and it is only on this condition that the relay system can be replaced by 
a linear equivalent. 

Following Ya.Z.  Tsypkin, we proceed to determine the condition of 
existence of continuous sliding action in terms of system parameters and 
external impulses.    We first have to express z(t) and *,(<) in explicit form. 
From Figure 7.24 we see that 

JS'{z(t)} = Kl(p)F,(p)J3r [0(0)1 (7.139) 

but since 

£>[O(0)}=J?\±Kcl=±y-- 

we have 

jsr[z{i)\ = ±Kl(p)F,U>)!j-- (7-14°) 

We see from (7.140) that z(t) depends on the parameters of the internal 
loop.   As regards x,(t), we have from (7.136) 

*\xdt)\=P/p)fK(p)3>M)- 

Making use of the known properties of the Laplace transform, we write 

jarb{f)\ = psr\zw\-z(%  1 (7.141) 
&\x(t))=pJ2?[x(t))-x,(0). I 

Inserting for .2" {z(0} and J? {x (t)) their expressions from (7.139) and (7.136), 

we find 

jr\iM] = ±%-Kl(p)F,U>)-z(V). (7-142) 

.PI* (01= fM + K(p)-S'^^-Z{0)- (7-143) 

If z(t) andi(f)are determined from (7.142), (7.143) and the results are 
substituted in (7.138), we obtain the conditions of continuous sliding action. 

A sliding-action relay system is thus equivalent to an infinite-gain linear 
system.   A relay system in the sliding mode can thus be regarded as an 
example of a real system with arbitrarily high gain.    This approach is 
often very convenient for systems where amplifiers have relay 
characteristics. 
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§ 7.12.    THE PROBLEM OF SENSITIVITY 

One of the methods to synthesize fixed-structure systems equivalent 
to adaptive systems is by choosing a configuration where the principal 
dynamic properties are independent of a wide-range variation of certain 
plant parameters or even of certain characteristics of system components. 

Bode was the first to introduce the concept of sensitivity, which 
essentially determines to what extent a change in the parameters of the 
individual elements affects the dynamics of the system as a whole.    This 
approach has established an intimate relationship between the synthesis 
of fixed-structure systems equivalent to adaptive systems and the design 
of structures which are insensitive or little sensitive to variation between 
wide limits of plant parameters,  plant characteristics,  or characteristics 
of individual system elements. 

The problems treated in this book are directly related to the various 
topics which are considered in the literature* under the separate heading 
of control system design.    In this category, e.g., there is the problem 
of a low-damping oscillatory plant,  of the so-called z e r o - s en s i t i vi ty 
systems**, where positive and negative feedback are used simultaneously, 
etc.   As regards the achievement of zero sensitivity by simultaneous 
application of positive and negative feedback, it is shown in Chapter Six 
that, unless special measures are taken, this solution yields noncoarse 
systems (in the sense of A. A. Andronov).    However, the main point here 
is that the synthesis of systems which are insensitive to variation of 
parameters and characteristics of the controlled object or of some 
component elements is an inherently structural problem.   A feedback 
system is not only an illustration but a convincing proof that the desired 
properties are ensured only by appropriately designed structures.    We 
know that the sensitivity to parameter variation in a negative feedback 
loop diminishes as the gain is increased.    However, increase of gain may 
lead to system instability.    The problem is therefore again to synthesize 
a structure which will ensure the necessary gain without losing its overall 
stability. 

Absolute or relative changes in the dynamic properties of the system 
as a function of parameter increments can be used as sensitivity indices. 
Bode introduced the following sensitivity index with a definite physical 
meaning.    Let K(p) be the closed-loop transfer function.    The sensitivity 
is defined as the ratio of the change in the closed-loop transfer function 
to the change in the plant transfer function,  i.e., 

„*<;» _ d\nK(p) _ dK(p)     Wa(P) ,„ .... 
öw> <"> — d In W, (p) — dWa (p) '   K(p)  ■ {(.I'i'i) 

An alternative definition of the sensitivity coefficient has been advanced 
by P.  Kokotovic /8 6/: 

S = tm = ^ (7.145) 

Bode, H. W.   Network Analysis and Feedback Amplifier Design. — N.Y., Van Nostrand.   1945. 
Tiuxal, J.G.—In:  "Samoprisposablivayushchie sistemy", Ch. III.   Translations from English.   Moskva 
IL.   1963. 

223 



where q is the parameter whose influence on system dynamics is being 
considered. 

In what follows we will describe the application of the two definitions 
to particular cases. 

1.    Bode sensitivity Sw in single-variable systems 

Plant characteristics can be altered only by external disturbances.    The 
characteristics change in the result of on-line interference from some of 
the plant parameters.    We are concerned here with systems where the 
plant parameters can vary between fairly wide limits in the course of 
the control process.   An adaptation (or self-adjustment) index of these 
systems is the degree of insensitivity of the transients to the plant 
properties or, more precisely, to their variation. 

We will apply the Bode sensitivity S& to estimate the adaptivity of 
systems with the above properties.    In fact, the smaller the sensitivity Sw, 
the closer is the system to an ideally adaptive one.    At first we consider 
a synthesis technique utilizing minimum-Sw structures for single-variable 
control systems. 

As we have already observed,  the properties of a system become 
progressively insensitive to changes in the controlled object as S&j$» 
decreases.    For this reason an idea] adaptive structure is such that Sw% 
is independent of W2(p) or S».|ft,->0. 

f>„ K K F\ 

'Z-fy~ > -H2>» > 
|       Wt(p) 

W3(p) 

< 

FIGURE 7.26.   An adaptive system. 

We now prove the following proposition: structures with infinite-gain 
stability stabilized by nearly ideal derivatives, where the derivatives are 
"idealized" by adjusting the gain values, are adaptive in the above sense. 
Indeed,  consider a structure of this kind,  shown in Figure 7.2 6.    The 
closed-loop transfer function is 

K(p)- WAp) 
W2(p) 

1+ Wa(p) W,(P) 
(7.146) 
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The sensitivity (7.144) is thus given by 

^[1+i>£(PJWAp)hwh <jff(rt     ..   W,(p) ['^ W: 
•-»WiM —  

[x+i*7mwM2 

tip)       W»(P) 
K     W'(P) i + W^V'lP) 

Simplifying, we find 

and 

>w2<ri = 
1 + V,(p) ■w*{p) 

X       ^"". (7.147) 
W3(/>) 

(7.148) 

K + ca 
>W,W~ 

We have obtained an ideal system in the sense of the preceding. 
Now consider the expression for sensitivity of systems with infinite - 

gain stability stabilized by passive stabilizers. 

KW,lp)        Wi(p) 

1 W(p) W2(p) 

—<2M2>— > 

< 

> 

Wp> 

W3(p) 

> 
WB<P>    r,     —i 

< = ■- > 
Wtr(p) 

< 

FIGURE 7.27.   Structural equivalent of 
Figure 7.26. 

FIGURE 7.28.   The use of an ideal plant. 

As an example we take the simple case of a system shown in Figure 7.2 7. 
The closed-loop transfer function is 

^/„x_ KWl{p)W,(p)  
A W — 1 + /(U7, (p) W3 (p) +KW, (p) W2 (p) 

(7.149) 

The sensitivity is given by 

cK(p) _U+KWl(p)Wi(p) + KW, (/>) W, (/>)] -KWi (P) W2 (p) /7 150, 
WAP) l+KWl(p)W3(p) + KWl(p)W2{P) ' K    * ' 

Simplifying, we find 
cJf(P) l + KWApyWtjp) 

■>w,<p)— l + KWl(p)W,(p) + KWt(p)W,{p) ■ 

At sufficiently high gain, we have in the limit 
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We see from (7.151) that even at fairly high gain, the system dynamics 
remains sensitive to changes in plant parameters or characteristics. 

Let us now try to improve on the stable structure so as to minimize 
the parameter influence on system dynamics and to make the system 
ideally adaptive in the above sense. 

As in the case of external disturbances which defy measurement, 
the adaptive system can be conveniently synthesized with the aid of 
an ideal, noisefree plant model.    Figure 7.28 is a structural diagram 
corresponding to this case.    Using the nomenclature of Figure 7.28, we write 

I(p) = KWi(p) [XiAp)-Xmt (p)- W3(p) Y(p)~ 
- W„ (p) W3 (p) [X'mt (p) - Xom (/>)]}. (7.152) 

Here X'M (p) is the transform of the ideal output, X out (p) the transform of 
the real plant output.    The ideal plant characteristics are assumed to 
remain constant. 

The difference X'm, (/?)— X om (p) is thus equivalent to a disturbance due to 
variation of plant characteristics.   Hence, 

X'oat(p)-X'om(p) = cF(p), (7.153) 

where c is a constant.    Thus, 

XmAp)=W'Ap)Y(p)+cWi(p)F(p). (7.154) 

Inserting for X '„„, (p) — X mt (p)in (7.152) its expression from (7.153), we find 

K(p) = ^r1(/7)[^ln(p)-^0„t (/>) W3(p)Y(p)-Wnp(p)W,(p)cF{p)\,        (7.155) 

whence 

r(P> — l + KW,(P)W3(p) ■        (7.156) 

Substituting (7.156) in (7.154), we find 

K (P) \K^i (P) *i„ (P) -KW, (p) Xm (p) - W„p (p) W3 (p) KWX (p) cF(p)) 
X°»'= \ + KWl(p)W3(p) (7.157) 

and solving for X om (p)we write 

X     I )_   KW,{p) W'2(p)*■» + W'2{p)cF(p) (7 158) 
out (P)       \ + KWi(.p)W^p) + KWl{p)Wi(p)' 

For K-*-oo we have 

X        s y.O»*»*»«')            vjWX^jp) (7 159) 
■""(p}     wx (p) w3 (p) + w, (p) W2 (p)      w3 (p) +W2u>)' ■      ' 

We see from (7.159) that the output is insensitive to changes in plant 
parameters.    If Wi(j>) is optimized (with respect to some quality criterion), 
the system will hold the optimum irrespective of changes in plant 
characteristics. 
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2.    Kokotovic sensitivity £ 

We deal here with the same cases as in the preceding subsection, using 
the sensitivity (7.145).    The variable parameter is the plant gain, which 
is allowed to drift between wide limits.    The transfer function of the plant is 

Wi(p) = KoW'i(p)\ (7.160) 

relation (7.146) is thus written as 

KKaW2(p) 

K{p)= EiM. . (7.161) 

+     W3(p) 

We are concerned with sensitivity in respect to relative changes in 
plant gain, K0-    We have 

KW2(p) r      KK0W2(P) 
w3(P)  L'^    W,(P) 

KW'2(p)    KK0W2 

W3(P)   '  W,(p)    „ _        KW2(p)W3(p) ,»1R9> 
 K° — \w ,„* i vvw'.^v ■     (7-16^) KK0W2(p)Y [W3(p) + KKaW'2(p)]2 ' 

[+      W3(P) ■]' 
Thus, 

lim 5 = 0, (7.163) 

i.e., the same result as before.    If the system is stabilized by passive 
stabilizers (real derivatives),  the results are also the same as those 
obtained with the Bode sensitivity.   In this class of structures, Sw and S 
are equivalent in the sense that they give identical results. 

The principal structural conclusion that follows from the preceding 
can be formulated as follows.    In   order   for   the   system   dynamics 
to   be   independent   of   changes   in   parameters or character- 
istics   of   some   element,    the   controlled   object   included, 
it   is   necessary   that   the   gain   of the loop with the variable 
element  be   sufficiently  high.    It is implied that the entire system 
remains stable in the process.   A system of this kind is realizable if its 
structure possesses infinite-gain stability. 

We see from our preceding treatment of sensitivity in two structures 
with infinite-gain stability that, in the second case,  increase of gain failed 
to produce sufficiently low sensitivity without the incorporation of an ideal 
noisefree plant.    This was so because we did not increase the gain of the 
loop with the variable element. 

In practice,  low-sensitivity systems can be synthesized by a simultaneous 
application of the two techniques.    This will enable us to dispense with the 
ideal plant in the network.   As an illustration, let us consider the case of 
a structure which is stabilized by ordinary passive elements.    The structure 
in Figure 7.26 is modified as follows (Figure 7.29): a high-gain amplifier 
is connected in series with the variable-parameter plant.    The closed-loop 
transfer function for Figure 7.29 is 

Klp) = K'Wt(p)W2(P) {1 164) 
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and 

i.e., we have obtained a system with zero sensitivity. 

(7.165) 

KW, W2(P> 
2H2>- > i r » > ■ 

T w3 
■ 

■ i L < -1 

FIGURE 7.29.   An adaptive system. 

It remains to be shown, however,  that the system is stable as K->-oo. 
Let the transfer functions of the system elements be 

**.« = *#.       *.M«£$    and    WiW-^. 

The characteristic equation is obtained by putting the determinant of 
(7.164) equal to zero,  thus: 

'^A0(p)    Fm(P) +K  D7JTW-0' (7.166) 

Dividing (7.166) through by W and putting -±- = m, we obtain after simple 

manipulations 

m2D(p)Q(p)Fm(p)+mR(p)Fm(p)D(p)+K0R(p)Fm(p) = O. (7.167) 

The difference in the degrees of the first two polynomials is q+m-r-n, 
where q, m, r, and n are the respective degrees of the polynomials Q, Fm, R, ' 
and Fn.    Since the structure in Figure 7.28 has infinite-gain stability, 
we may write 

q + m — r — re<2. 

Now consider the difference v in the degrees of the last two polynomials 
If d is the degree of D(p), we have 

v = n + d — m. 

Since n — m has been determined from the structure in Figure 7.28, 
everything depends on the value of d, which is the degree of the denominator 
of the plant operator.    If d<2,  zero sensitivity can be attained for the 
structure in Figure 7.29 without any additional means.    If, however,   d>2, 
the inequality 

v = re — m-f d<2 
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must be satisfied. This can be done by a simultaneous application of the 
first and second methods of synthesis of previously discussed structures 
which are stable for /C-voo. 

We have already shown how to achieve infinite-gain stability in systems 
with nonlinearities of a certain kind.    We have also emphasized that an 
infinite gain is realizable with a sliding-action relay system.    Infinite gain 
can also be obtained with the aid of a sliding-action system of variable 
structure /8/. 

At the end of this chapter we will show by considering a number of 
examples that our conclusions concerning zero-sensitivity structures can 
be extended to plants with variable parameters as well. 

And now a few words on multivariable control systems.    In this section 
a system is regarded as ideal or adaptive if the control dynamics are not 
overly influenced by the variation of plant characteristics.    Feedback 
between the controlled variables obviously affects the dynamics in each 
control loop irrespective of whether the particular controlled variable is 
sensitive to variation of plant characteristics in the other variables or not. 
For this reason,  system optimization in this case automatically involves 
noninteraction.    If each controlled variable has its own extremum, and there 
is no single extremum for the entire system, noninteraction is the most 
desirable operating mode. 

§7.13.    SYSTEMS CONTAINING ELEMENTS 
WITH VARIABLE PARAMETERS 

The parameters of many elements vary with time.    Systems containing 
such variable elements are called systems   with   variable   para- 
meters.    The time variation of the parameters may be quite arbitrary. 
For example, the self-inductance and the mutual inductance of synchronous 
machines with prominent poles are sine functions.    In general, time 
variation of the parameter is not always known.    If an element with a 
variable parameter is included in a control System, the variation can be 
interpreted as internal parametric noise, an obviously undesirable effect. 
We thus again arrive at a problem of sensitivity: find a structure such 
that time variation of a parameter does not influence  the  dynamic 
properties of the system as a whole or, alternatively, find a structure 
whose dynamic properties are insensitive to time variation of the parameters 
of individual elements. 

Consider the following example.    Let the controlled object be described 
by a first-order linear differential equation with variable parameters, 
specifically: 

a(')Tf- + »Mtf„ = *. (7-168) 

Here a(t) and 6(0 are time-variable coefficients, i/out| a controlled variable, 
x the controller input.    Our task is to maintain yjmt iconstant. 

We will make use of the previous results obtained for linear systems 
with constant parameters.    Figure 7.30 is a structural diagram of a system 
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that maintains the output yom constant, changing it only if y,e!is changed. 

We put "5J-= p. *   Then (7.168) is written 

[a(t)p+b(t)\yml(t) = x(t). (7.169) 

The equation of the system shown in Figure 7.30 is written as follows. 
For the section with constant coefficients we have 

ff+K*IyWf(Q-y««(0]=*ffl. (7.170) 

and the element with variable parameters is described by (7.169).    Eliminat- 
ing x(t) and differentiating, we find 

[Ta(t)p* + Tpa(t)p+Tb(t)p + Tpb(t) + a(t)p + b(t)\y „ (t) + 
+ K\a{t)p + b(t)\ymt(t) + K*(\ + Tp)ymx(t) = 

= K2(\+Tp)y,tf(t). 

Dividing both sides of (7.171) by AT2 and putting ^- = m, we find 

{rri>\Ta(t)p> + (Tpa(t)+a(t)+Tb{t))p + 
+ Tpb(t) + b(t)]+m[a(t)p + b(t)] + 

+0 + 7» }y«(0 = 0 + 7» y,M> 
lim yom (/) = (/„,(<)• 

(7.171) 

(7.172) 

We have automatically obtained an ideal response, provided that the 
gain can be made arbitrarily large.    The only restriction imposed in this 
case is the requirement of continuity of the time-dependent coefficients. 
The absolute values of pb(t) and pa(t) are thus finite.    This restriction on 
the variation of the coefficients enables us to introduce further simplifica- 
tions and to elucidate in greater detail the dynamic properties of the system. 

'•^2H2H^h-r^" 

1+Tp 

> 

FIGURE 7.30.   A plant with variable parameters. 

Indeed, introduction of high-gain amplifiers,  one of which is embraced 
by an aperiodic element, ensures faster and more faithful reproduction 
of the reference signal as the gain is increased,  so that for sufficiently 
high gain values the coefficients a(t) and b(t) can be regarded as slowly 
varying.    In a sense we end up with a network which is equivalent to a 

*     Do not confuse this operator p with the complex number in Laplace transformation. 
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linear structure with constant coefficients.    The structure chosen should 
remain stable at infinite gain.    The degenerate equation then takes the form 

[T + m^i)\p + \+T(t)m = 0, (7.173) 

where a(t) and 6(7) are constant for the duration of the transient.    If   o(7j 
and b(t) may take on negative values, it is necessary for the stability of 
the degenerate equation that ma(t)<T and mb(f)<l, which is always feasible 
by making an appropirate gain adjustment. 

The additional condition in this case has the form 

r?%n>0. (7.174) T + ma (t) ' 

We see from (7.174) that the coefficient a(t) must not be negative; 
otherwise the system is unstable. 

We have thus proved that a virtually ideal response is attainable in this 
class of structures in the presence of elements with time-variable para- 
meters.    In other words, we have obtained a structure which is insensitive 
to the influence of time-variable parameters. 

The above results can be readily generalized to the case of a controlled 
object described by an n-th order equation with variable parameters. 

If n is the order of the equation describing the variable element, there 
is in general re + 2 variable parameters, and a dynamically insensitive 
structure is generated by connecting re amplifiers of sufficiently high gain 
in series with the variable elements.   Of these,   n-1 amplifiers are 

stabilized by feedback elements of the type x ,'     .    The system is tested 

for stability assuming relatively slow variation of the coefficients. 
The system is realizable if the degenerate and the auxiliary equation 

each satisfy the stability conditions. The number of amplifiers may be 
reduced to re/2 + 1 if each amplifier is stabilized by a device with a transfer 

function apl + bp + 1 .    This produces an auxiliary equation of the third kind. 

In practice, it is more advisable to use n amplifiers for the following 
reasons.    First, the amplifiers themselves have a certain, albeit small, 

inertia, and this may limit the gain if ap2 + \p , l stabilizers are used, 

while Tp<i amplifiers are virtually unaffected by this property.   As an 

illustration,  Figure 7.31 gives a specimen structure for the case of a 
plant described by a fourth-order differential equation with variable 
parameters. * 

One highly important property of these structures should be stressed. 
The point is,  that the effect of the variable parameters on system dynamics 
is suppressed by the gain of the unstabilized amplifier.   As regards the 
other amplifiers, they produce the derivative action required for purposes 
of stabilization (it also ensures accurate and fast response).    If there are 

n amplifiers with stabilizers of the type y \1 , all derivatives from re-th 

If the time rate of parameter variation cannot be ignored, the stability should be investigated by the 
method of V. M. Popov. 
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to first are produced; the higher the gain values, the closer are these 
derivatives to the ideal.    But the gain of a closed loop comprising a high- 
gain amplifier and a stabilizer is" close to unity.    This is highly significant 
for noisy systems. 

Kef 

k<y k^ H<y 
1 7 1 

J+Tp 1+Tp J+Tp 

FIGURE 7.31.   A more general case of a plant with variable parameters. 

High gain is attained with the aid of sliding-action relay systems /71/ 
or variable-structure systems, also operating in the sliding mode /8/. 

In conclusion a few words on the potential of the systems discussed. 
From the aspect of classification of optimum control systems (e.g., 

according to Draper and Lee), we have to consider two cases. 
1. The plant characteristics and the input-output functional dependence 

are well known.   One input is adopted as the primary reference for control 
purposes, and all other inputs are generated by a programmed device 
which optimizes the system in accordance with the given input-output 
relationships.    This system will function successfully in the noisefree 
case or if noise is suppressable. 

2. The plant characteristic is not known.    We only know that it has 
an extremum, which can be located by one of the searching techniques. 
First, the characteristics of the searching signal should be optimized in 
terms of gain and frequency; second, the output searching losses are 
minimized (this is the difference between the optimum value and the 
effective steady-state output); third,  the time-to-optimum is minimized, 
and last,  the realizability of a system which only requires occasional 
search is established. 

Let us consider the case of a plant characteristic represented by the 
curve in Figure 7.32.    For small deviations from the extremum,  the 
characteristic is satisfactorily approximated by a parabola 

y = K#. (7.175) 

This particular assumption does not detract from the generality of our 
conclusions.    It should be stressed,  however, that the assumption expressed 
by equation (7.175) is physically meaningful.    It implies that the structures 
we are interested ii} are potentially capable of ensuring very high transient 
and steady-state accuracy.    Assumption (7.175) is thus fully justified. 

In § 7.5 we have assumed that the noises altering the plant character- 
istics are injected directly into the plant and that they can be measured. 
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In this case neither continuous nor periodic search is required.    It 
suffices to find once and for all the optimizing parameters, and the 
system is then synthesized as a combined control system along the lines 

described in Chapter Five.    In reality, however, 
y even if the relevant noise is delivered to the plant 

input,  we cannot be sure that some other disturbance 
will not cause the output to drift from the optimum; 
the probability of this drift is the same whether the 
input is decreased or increased.    Making use of (7.175), 
we readily see that drift due to a decrease of the 

- x        input substantially alters the properties of the entire 
system,  since the plant characteristic is unstable 
under these conditions and all the calculations should 

FIGURE 7.32.  A plant ^e carriecj out keeping this instability in mind. 
characteristic. _ , . .        ,, 

For the system to retain the same structure in all 
operating modes,  a combined-action system should 
be built, where the controllable deviations are no 

longer the deviations of the output from the reference value but the deviations 

of    y,°m from zero. 

It is significant, however,  that the proposed fixed-structure systems are 
essentially different from ordinary searching systems in the following 
particulars. 

1. Since the main noise is suppressed,  the search characteristics are 
chosen so that the searching region and the output searching loss are 
minimized. 

2. Periodic search is quite sufficient: it is turned on only when the 
controlled variable has departed from the optimum by more than a preset 
permissible value. 

3. A successful synthesis technique calls for a combination of extremum- 
holding systems with periodic search. 

§7. 14.    SPECIMEN CALCULATION OF A FIXED- 
STRUCTURE CONTROL SYSTEM WITH SELF- 
ADAPTIVE PROPERTIES 

The example discussed in this section is borrowed from R. J. Kochen- 
burger's paper presented at the IFAC Second Congress. 

Figure 7.33 is a block diagram of Kochenburger's system (the symbols 
have been altered to conform with the usage in this book. The problem is 
to maintain the controlled variable y constant and equal to the reference 

value yn!.    The transfer function of the controlled object is J^.   ; the 

parameters of the operator D(p) remain strictly constant, while the gain K 
varies between wide limits.    In Kochenburger's system the gain varies 
by a factor of 100 : 1,  and it is this gain variation that provides the main 
disturbance. 
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The author rightly stresses that his solution is considerably simpler 
than the conventional solutions, where complex calculators are used to 
perform the search.    In Kochenburger's solution the product fiK is main- 
tained constant (n is the controller gain).    Therefore, there is an element 
measuring the change in K an another element which alters n appropriately, 
so that \iK= const. 

± 
■^~<2h-  > > 

ffip) mp) 

FIGURE 7.33.   Kochenburger's system. 

f 
yr yc 

f 
p > K " 

nip) T 
FIGURE 7.34.   An element of Kochenburger's system. 

l_xvL J Slope 
*, .  ?-/ ' / 

B(p)            / 

      <     .. 1 
Bf(p) 

FIGURE 7.35.   The oscillatory circuit in Kochenburger's system. 

Kochenburger's control scheme, however,  is fairly complicated.    This 
will become the more obvious once the same problem is solved by using 
the methods of this chapter. 

First we briefly review Kochenburger's original solution.    The following 
convenient representation of the original system is proposed.    Since the 
parameters of D(p) are constant and only K is variable and since the controller 
operator R(p) is also constant and only the controller gain u, is altered, 
D(p), R(p), K, and n are represented by separate elements,  as is shown in 
Figure 7.34, where the output signal of R(p)%s delivered to the input of 
the element with controlled (i.    Figure 7.35 shows an auxiliary feedback 
loop which ensures the appropriate variation in (i.    This circuit uses a 
very-high-gain amplifier with a limiter and a linear feedback element 
G;(p).    The output signal of the high-gain amplifier is limited by a special 
feedback arrangement, not shown in the figure.    The amplifier character- 
istic thus has a linear section limited between Yr=±L.    The filter of 
the feedback element Gf{p) is so chosen that high frequency sustained 
oscillations are excited in the circuit for all values of the plant gain K. 
These oscillations provide the sampling signals in the auxiliary circuit. 
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The angular frequency <od of the oscillations should be sufficiently high, 
so that the amplitude of the oscillations at the output of the plant (which 
acts as the filter) is negligible. 

The characteristic of the limiting high-gain amplifier is so chosen that 
when no input signal x is delivered, the amplifier has a zero average output. 

Now suppose that x takes on a certain constant (say, positive) value. 
The output of the high-gain amplifier is biased and the average value is no 
longer zero.   If a, L, and Gf(p) are appropriately chosen, Yr   and A: will 
be nearly proportional to each other, i. e., Yr = \LX.   If the signal x is 
constant, the gain n is proportional to the mean value of the constant 
output component of the high-gain amplifier. 

Kochenburger has shown that the proportionality coefficient varies 
approximately in inverse proportion to K.    The sought functional dependence 
for the variable gain n is thus obtained. It is moreover shown that the 
results are also valid for a slowly varying x.    It now remains to vary the 
gain n in proportion to Yr,  so that |J(= const. 

This method is applied to synthesize the circuit shown in Figure 7.36 for 

D(P) — (i+o.2/>y (I + 0.1 .005/>) (7.176) 

and K varying by a factor of 1:100. 

r» Yaw1^ ■Dfpj 

>  — K 
T 

FIGURE 7.36.   General configuration of Kochenburger's system. 

We now solve the same problem by using the methods of this chapter. 
The problem is stated as follows.    Find a fixed-structure system (without 
a searching element) which maintains the controlled variable Y constant 
while the plant gain varies in a ratio of 100 : 1, the plant transfer function being 

WW ~ (l+0.2/>)»(l+0.005/>) (7.177) 

(a different range of gain variation may of course be assumed). 
Three linear amplifiers with a sufficiently high gain are connected in 

series with the controlled object.    Two of these amplifiers are controlled 

by feedback elements T    , l and T    , },  respectively.    The entire control 

system takes the form shown in Figure 7.37. 
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We proceed to determine the system transfer function.    Using the 
nomenclature of Figure 7.37, we write 

K 

Y(p) i + T^ri + -   *h 
1 (1 + 0.2/))2 (1+0.005/!) 

y«*{p) 
1 + TlP    ^ 1 + T,p 

1 + Kh 

l + T^nrl + -   *h 

K 
'(1 + 02/))* (I+ 0.005/?) 

l + r,p    ^ l + r,p 

and after elementary manipulations 

Y{P) *g(l+ V)(l + r2p)/C 
^fCP)       (1 + 7-,/. + ACh) (1 + r2Jt> + /Ch) (1 + 0.2/>)2 (1 + 0.005/0 + 

+ K3
hK{l + Tlp)(l + T2p) 

(7.178) 

Dividing the numerator and the denominator by A"' and putting -^- — m, 

we write 
Y(P)   _K(l + TlP)(l + T2p) 
r,«(p) (7.179) 

where 

P, = m? (1 + 7» (1 + TiP) (1 + 0.2pf (1 + 0.005/7) + 
+ m?\2+ (T, + T2)p\(\ + 0.2/7)2(l +0.005/0 + 

+ m(l +0.2^(1 + 0.005/7) +AT (1 + 7»(1 + 7» 

Hp) lim   Y   , 
m->0   'iüf(W 

= 1. (7.180) 

In other words, we succeeded in compensating the gain variation and 
incidentally obtained a high-quality control system.    In order for the 
results to be realizable,  the system should be tested for stability as m-v0. 

Ke, 
", «* K3 Dip) 

2H2)- > —M»A?V_ > > > 

l_ < < 
7 1 

UT,p 1+T2P 

FIGURE 7.37.   Illustrating the solution of Kochenburger's problem. 

The characteristic equation is obtained by putting the determinant of 
(7.179) equal to zero,  thus: 

m% (1 + 7» (1 + 7» (1 + 0.2/7)2 (1 + 0.005/7) + 
+ m? 1(7", + T2) p + 2] (1 + Q.lpf (1 + 0.005/>) + 

+m(l +0.2/7)2(l +0.005/7)+ AT(1 + 7»(1 + T2p) = 0. (7.181) 
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The degree of any two successive polynomials decreases by one, and we 
thus have an auxiliary equation of the first kind.    After some manipulations, 
we obtain the auxiliary equations in explicit form: 

0.0002 Tl r2?3 + 0.0002 (Tt + T2) q
2 + 0.0002? -+- AT, T2 = 0. (7.182) 

The coefficients of this equation should satisfy Hurwitz' criteria.    The 
constraint imposed on K is 

K<o.om^ + r2) {7183) 

Hence we can readily choose the time constants that ensure stability in the 
entire range of gain variation; thus, for Ti=T2= 0.01, we have /(<400. 
In other words,  the gain may take on any value from zero to 400. 

Kochenburger is concerned with the case of a system which can accommo- 
date a gain increase by a factor of 100 : 1.    Our stability range is much 
wider than that.    The degenerate equation 

(l + 7»(l + r2p)=0 

always satisfies Hurwitz' conditions.    If the plant time constants are xt, T2, 

and T3,  relation (7.183) takes the form 

K<^ih^+IA. (7-184) 

In conclusion there is one other problem to be considered.    In Kochen- 
burger's paper it is assumed that the rate of gain variation may be com- 
parable with the time rate of transients in the system.    It is clear from 
our result (equation (7.180)) that for sufficiently high gain the transients 
are very short-lived and no additional tests are required.    However, 
if the gain is such that the transient time constant in the system is 
comparable with the time rate of variation in K,  the solution is valid 
only if the system is additionally tested for absolute stability in the 
given K range.  This test can be readily made using V. M. Popov's method /l/. 

The theoretical performance of the system shown in Figure 7.37 was 
tested using a model.    The plant time constants were T2= 0.2 and T3= 0.005, 
i.e., the same values as in Kochenburger's paper.    The stabilizer time 
constants were 7'i = 7'2= 0.01 and the plant gain varied from /Cmin= 0.1 to 
#max= 10.    The amplifier gain was Ä"h=200. 

Figure 7.38 is an oscillogram of the process for K= 10 and Figure 7.39 
is the oscillogram for K= 0.1. Figure 7.40 is an oscillogram of a system 
with a sine-law gain K, varying at a frequency <x>d= 1 cps.    In all cases   Y,ef= 1. 

FIGURE 7.38.   Oscillogram for K= 10. 
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t'ß/hed 7^^ 

FIGURE 7.39.   Oscillogram for K= 0.1. 

FIGURE 7.40.   Oscillogram for K= 5- 4 sin 6.28 t. 

We see from these oscillograms that: 
1. The steady-state value of the controlled variable is the same in all 

cases,  i.e.,  the system indeed maintains the controlled variable independent 
of the plant gain and its variation. 

2. The transient is virtually the same in all the three cases, an 
obviously satisfactory result. 
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Chapter Eight 

VARIATIONAL ASPECTS OF MULTIVARIABLE CONTROL 

§8.1.    MULTIVARIABLE CONTROL AS A 
VARIATIONAL PROBLEM 

We have noted before that multivariable control systems can be divided 
into two classes with fundamentally different optimization behavior. Since 
this division is of the utmost significance for correct choice of optimality 
tests and efficient design of control systems, we will go into this problem 
in some more detail. 

In Chapter One we analyzed the problem of strip gage control in hot 
rolling mills and found that the quality of the metal depended on the 
precision with which a number of parameters were controlled,  e.g., 
main drive speed,  roll position,  etc.    However,  improvement of the 
dynamics of each individual controlled variable does not necessarily mean 
that the system as a whole is optimized.    Optimizing is attainable if the 
control of the individual variables is aimed from the very start at the 
principal target,  namely achieving the necessary geometrical dimensions 
of the rolled strip. 

Another example is provided by oil reservoirs, which were considered 
in Chapter One as an object of multivariable control.    Efficient exploitation 
of the field, in the sense prescribed by our problem, is attaining maximum 
output (in the limit,  draining the reservoir of all its oil) in the shortest 
possible time and at the lowest possible cost.    Constant field operating 
conditions are maintained by sinking additional injection wells through 
which water is driven into the strata,  and the field parameters can be 
regulate'd by adjusting the working conditions of these injection wells. 
Field exploitation, however,  is further constrained by the large-scale 
requirements of national oil industry.   In principle,  oil fields can be 
worked in a multitude of different ways, while in practice the output is 
limited by the capacity of the equipment.    Now,  even if the equipment 
limitations have been allowed for, we are still left with a variety of well 
exploitation conditions and it is  our job to select the optimal alternative. 

The oil-and-water-bearing strata in conjunction with the well constitute 
a single hydrodynamical system.    If the outputs of some of the wells are 
altered, pressures and flow patterns in the entire field are affected.    For 
example, enhanced exploitation of a number of wells only, with continued 
injection of water, will eventually lower the stratal pressure, and many 
wells may stop producing;  moreover, formation water may penetrate into 
the region of reduced pressure, and some wells will be prematurely flooded. 
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Well depletion and flooding raise the cost of field exploitation.    It is 
clear,  therefore, that the well operating conditions should be chosen with 
due consideration to economic factors. 

One of the fundamental requirements in planning the well pattern is that 
the formation pressure distribution comply with the desirable working 
conditions and,  in particular,  the possibility of natural flow.    This of 
course imposes additional restrictions on oil field exploitation,  and it is 
by no means certain that the result is the optimum.    The point is, that the 
real oil reservoir is inhomogeneous in its physical and chemical properties, 
so that each well has a different potential.    Moreover,   starting at a certain 
stage of oil field exploitation,  the wells are all flooded in varying degrees. 
The flooding is generally more pronounced in wells with high production 
rates.    It should therefore be understood that driving a well at a maximum 
rate of production may eventually lower the output and increase the produc- 
tion costs for the field.    On the other hand, hopelessly flooded wells can 
be "suppressed" (or even discontinued entirely),  so that the total oil output 
increases markedly.    We are thus clearly faced with a variational problem 
of optimizing the oil production conditions under a given set of constraints. 

In the two cases above, multivariable control provides an adequate 
solution of the problem,  and each individual variable should be controlled 
in such a way as to extremize   some  generalized    quality   index 
of the system as a whole.    In this  chapter we will consider the detailed 
solution of the problem in application to the simplest case of oil field 
exploitation. 

All the preceding refers to systems of one class.    The other class 
includes multivariable control systems which are optimized by optimizing 
every individual controlled variable.    We will show in the following that 
in this case also the control equation is obtained by solving a variational 
problem. 

§ 8.2.    APPLICATION OF  LINEAR  PROGRAMMING 

The linear programming (LP) problem can be stated as follows:   find 
a vector y{yu ..., yn) maximizing (minimizing) the linear form 

n 

R=1iclyi, (8.1) 

where the variables satisfy the linear constraints 

J/;>0       (;=1, 2 n) (8.2) 

and 
auy, + aJ2y2+ ... + auy„ = bu 

ajiyi + aj2y2 + ... -\-ajlyi + ... + aJny„ = bj, 

a-m\y\ + amiy2-\- ... +amlyt+ ... + am„yn = bm, 

where aM, &,, and c{   are known constants and m<n. 

(8.3) 
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In matrix form the general LP problem is written as follows;  maximize 
(minimize) 

CY (8.4) 

subject to the condition 

K>0,       AY = b. (8.5) 

Here C is a row matrix,   Y a column matrix,  A = [ats]a mxn matrix,  B a 
column matrix. 

In Chapter One we derived a set of algebraic equations which, under 
certain conditions,  approximately describe the behavior of an oil field. 
These equations are based on the assumption of linear seepage (Darcy's 
linear law of filtration) and rigid operating conditions.    The relation 
between debit and pressure in a well is given by the expression (see 
Chapter One) 

4Q = AP, (8.6) 

where A is a regular mxn matrix, Q and AP are «-component column 
matrices.    The elements of the matrix A are found from the relations 

«« = ■$ <8-7> 

For n producing wells the matrix equation (8.6) is a set of n linearly 
independent equations which for   Q,- >0  define the boundary of a closed 
convex polyhedron.    If Pt and  Q; are varied, the hodograph of the vector 
Qt will fill a certain domain containing all the points of the convex set. 
The matrix equation (8.6) in this case may be clearly given by the inequality 

/Q<AP 

or, alternatively, 

2a;,Q,<AP, (8.8) 

(j = l, 2, ..., ft). 

The preceding discussion also has a vivid geometrical interpretation. 
As an example,  consider production from two wells.    Relations (8.8) take 
the form 

fluQi + auQl < P* — Pi, \ (8.9) 

chiQl+anQl^Pk—Pl 

Here p denotes the producing well,  k the pressure on the field boundary; 
Pli2 is the well pressure.    Geometrically (8.9) describes a convex quadrangle 
OABC (Figure 8.1), which is obtained in the following way.    First put 
Qi>0   and   Q2>0.   We are thus concerned only with the first quadrant of the 
Qi,Q2 plane, limited byQi=0 and Q2=0. 

Now consider where the first inequality of (8.9) reduces to an equality, 

anQr+a12Q2
p=P*-Pr. (8.10) 
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The half-plane containing all the solutions of inequality (8.9) (the first 
inequality) is located below and to the left of the line (8.10).    The equation 
of this line is 

' «12 Vl ^      a,s (8.11) 

The intercept of this line on the Q2 axis is 

Pä-i*i 
(8.12) 

and its intercept on the  Qi axis is 

P>-P\ 
(8.13) 

The second line is constructed in the same way.    We thus delineate 
a region where expression (8.6) holds true. 

* *u 
FIGURE 8.1.   Illustrating the linear 
programming problem. 

Now consider the linear form 

•a = Qi + Q2. (8.14) 

which gives the total output (water and oil) of the two wells.    Let us 
maximize the total output.    This is best done by a geometrical construction. 
For particular values of v expression (8.14) describes a family of straight 
lines which are marked in Figure 8.1 as   XY.   The maximum is attained at the 
point QICQM where the line XY is tangent to the convex quadrangle (point B in 
Figure 8.1).    The output is thus maximum when well 1 produces Q10 and 
well 2 produces Q20.    This result holds true if the only constraints are 
those imposed by the inherent properties of the oil reservoir.    In what 
follows we call these constraints the technological constraints of the 
variational problem. 

Linear programming is thus applicable to optimizing multivariable 
control systems described by linear algebraic equations with a generalized 
quality criterion, which is a linear form in the controlled variables. 
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§ 8.3.    THE  PROBLEM OF OPTIMUM OIL- 
FIELD EXPLOITATION 

The applicability of linear programming to oil production optimizing 
was illustrated for the simple case of two producing wells. Let us now 
consider a more general case often encountered in practice. 

We have already discussed some technological constraints.    The main 
parameters to be constrained are the permissible and the maximum 
formation and well pressures.    In practice AP can be arrived at by con- 
sidering the permissible and the maximum well pressures.    The various 
requirements of the production schedule for the different parts of the field 
and the redistribution of flow streams needed to control formation water 
circulation can be satisfied by forming linear combinations of some 
components   APt. 

However, optimum production schedule depends not only on the inter- 
relationship between wells and the maximum pressures in production and 
injection lines.    Another class of restrictions are connected with the 
limited capacity of equipment: 

I>Qj<Q       (/=« I). (8.15) 

In what follows constraints (8.15) will be regarded as the production 
constraints of the variational problem.    Relations (8.15) correspond,  e.g., 
to pumping restrictions associated with the productivity of water-disposal 
equipment or intermediate water-pumping stations.    Similar inequalities 
may represent production restrictions because of insufficient through 
capacity of demulsifying plants,  storage pools, gravity-flow and head-flow 
collectors. 

There are also restrictions of purely economic character.    The majority 
of economic constraints are associated with capital outlay.    In well 
optimizing it is assumed that the plant (i.e., the number of wells and the 
well pattern) is given.    The capital investment may therefore be regarded 
as constant during a certain period of time.    Since the investment does not 
change,  the economic constraints are ignored at this stage. 

The choice of the optimum well pattern is a complicated problem of 
independent interest,  and we will not go into it here. 

Consider the field exploitation charges, which can be itemized as a 
function of well outputs. The power requirements can be written as a 
linear function of the outputs, thus: 

2>bjQj<.M, (8.16) 

where  6,- are the charge coefficients, N the power restrictions. 
Production planning criteria impose additional constraints of the form 

|[C,Q(>Qt, (8.17) 

where C< is the proportion of oil in the fluid lifted from the »-th well, 
Q,  the oil production target. 

The variational problem can now be stated in two alternative forms: 
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(1) Find well operating conditions ensuring maximum total oil output 
under given technological,  production,  and economic constraints. 

(2) Find well operating conditions ensuring minimum production cost 
for the planned output under given technological and production constraints. 

In principle, the two statements are identical.    Therefore, without loss 
of generality, we will only consider the problem of maximum total output 
under given constraints, where the functional (the object function) is written 
in the form 

F(Q)=IiCiQ. (8.18) 

The set of equations specifying the technological constraints are thus 
combined with expressions for production and economic constraints.    If 
the combined constraint matrix is designated Ku,  we arrive at the following 
statement of the variational problem: 

Optimize 

$CtQ, (8.19) 

given 

ll*yllllQ/ll<l|r||- (8.20) 
and 

Q/>0. (8.21) 

Here ||/C«||  is a rectangular mxn matrix with m>n; IT II is the m-component 
constraint vector (column matrix). 

A few words about the coefficient  Ct.    It is defined as the proportion of 
oil in the pumped fluid:   C,= l indicates that the well produces pure oil, 
whereas C,=0 means that the fluid contains no oil altogether (as is the case 
in injection wells,  say). 

§ 8.4.   A NUMERICAL EXAMPLE 

The theory of the preceding section can be illustrated by a numerical 
example.    The data below do not apply to any particular reservoir, but 
they are nevertheless typical.    Consider a sector with six wells. Figure 8.2 
shows the well pattern and the formation boundaries;  the numerical values 
of the hydraulic resistance are also given.    This information is sufficient 
to write the equation of linear seepage.    The figures were obtained from 
(8.7) using a grid model. 

Wells 1 and 6 are injection wells,  so that C, and C6 are both zero (the 
fluid is pure  water). Wells 2, 3,4, 5 are producing wells with mechanical 
sucker-rod pumping,  electrical centrifugal pumping, natural flow,  and 
hydraulic long-stroke pumping,  respectively.    The proportion of oil in the 
fluid lifted from these wells is respectively 0.4, 0.9,  1, and 0.1. 

The maximum output differs from well to well depending on productivity 
coefficients,  formation and well pressures, and also the layout of auxiliary 
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TABLE 8.1 

Specifications Constraints Justification 

1 Injection well pressure not to ex- Pl<lPl] Direct experiment with the water pumps 
ceed the allowed maximum of connected to one of the wells 

2 
the equipment 

Producing well pressure not below 
a certain limiting figure 

Pi > [Pi] Calculations based on pump stroke 
length and minimum self-flowing 

3 To ensure stable natural flow, the Pt\Q,-o>[P<) 

pressures 
Calculations based on item 2 under 

dynamic formation pressure for 
well 4 not to be less than a 

given output restriction 

certain limiting figure 
4 To prevent gas invasion, the 

dynamic formation pressure for 
well 3 not to be less than satura- 

P* 1 Qj=0^ °s The equipment will lift at well 
pressures below saturation pressure 

5 
tion pressure 

To avoid premature flooding of Q3>Qt Analysis of depression regions on the 
well 4, the water tongue in the grid model 
dangerous direction 3—4 should 
be tied to well 3 

6 Siphon output and secondary re- Q,<IQ,] Direct experiment 

covery water pump output not to 
exceed certain limiting figures 

Q,<IQA 

7 Through capacity of the well 3-to- 
well 4 gravity-flow collector not 
to exceed a certain limiting 

Og<t<?gl Calculations and direct experiment 

8 
figure 

Demulsifying plant productivity not 
to exceed a certain limiting figure 

<?d <[<?<] Direct experiment and statistical 
data 

9 Product released from storage pool 
to meet certain quality standards 

1<N Consumer requirements 

10 Power requirements not to exceed N<{N] The statistical dependence   N=N(Q) 
a prescribed figure is derived empirically 

TABLE 8.2 

Output 
Well number 

1 2 3 4 5 6 

Qi 118.5 100 25 25 0 12.5 

CM 0 40 225 25 0 0 
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storage and processing installations.    Figure 8.3 shows the general layout 
and the communication lines.    It is assumed that the technological,  produc- 
tion,  and economic constraints are all known.    The relevant information 
is listed in Table 8.1. 
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FIGURE 8.2.   Oil reservoir data. 

Storage pool 

Demulsifying 
plant 

FIGURE 8.3.   Layout of oil-field installations. 
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The problem is to find well operating conditions that ensure maximum 
oil production under the given constraints.    Using Table 8.1 and the 
numerical data, we formulate the following mathematical problem. 

Maximize the linear form 

<?i 

<?. 

Q, 

Q, 

<?5 

under the given constraints 

3, 0.4, 0.9, 1, 0.1, (8.22) 
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—011 < 
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70 

043 Qs 50 
000 <?6 0 

—008 110 
—012 0 

100 250 
000 50 
000 100 
000 0 
020 95 

The problem was solved by the simplex method,  and the results are 
listed in Table 8.2. , 

§ 8.5   SOME GENERAL CONSIDERATIONS 

We should first justify the application of linear programming to the oil 
field exploitation problem.    In the general case of a plant without memory 
with constant coefficients in the algebraic equations describing its behavior, 
linear programming can be used to a considerable advantage,  especially 
since the numerical algorithms of this method are easily adapted to 
digital computers. Straightforward application of linear programming to 
oil production control,  however, would be somewhat improper,   since no 
real oil reservoir is actually maintained under steady-state conditions. 
The coefficients ay entering the initial equations of the technological process 
and the constraint inequalities are variable in time,  and not constant.    In 
some cases the coefficients a{! change very slowly and gradually (e.g.,  in 
the case of migration of the formation boundary),  whereas sometimes they 
will change abruptly (as when the target figures are modified). 

The resulting difficulties can be overcome if the coefficients are ad- 
justed as we go on, to meet the change in standards and specifications. 
The main difficulties thus arise due to the requirement of systematic 
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adjustment of the coefficients ati, which are dependent on the state of the 
oil reservoir.    The values of these coefficients can be determined in 
practice only by using each well successively to introduce a certain 
disturbance into the process,  while decoupling all the other wells, whose 
operation is stabilized with respect to the disturbance parameter. 

Such operating conditions can be achieved by automatic stabilization of 
well operation.    However,  the direct experimental approach does not 

appear particularly promising in view of the 
exceedingly slow transient in the well-formation 
system and the rapid reduction of coupling with 
the distance from the source of the disturbance. 
Figure 8.4a plots the pressure recovery in a 
well distant 500 m from the disturbing well, 
which stopped producing at t = 0.    Before that, 
the stopped well had operated for a long time with 
constant output /40/.    We see from the curve that 
direct experimental determination of a^ requires 
well observations over a number of months. 
Besides being impracticable,  this approach is 
inadequate since during such a long period other 
formation parameters may also change appreciably. 

The coefficients a,-,- can be obtained by direct 
experiment only if special well stabilizing systems 
are provided (see Figure 8.4b).    In this case a 
model of the controlled object is incorporated in 
the control system and updated at fixed intervals 
on the basis of current information on formation 
structure obtained by geological,  geophysical, 
and hydrodynamic methods /72, 75/.    Successful 
models have been actually devised for more or 
less uniform formations  /72, 75/, but no adequate 
grid models have been built for the general case 
of a reservoir of complex structure.    The main 

difficulties are associated with the determination of the mathematical 
nonuniformity function of the formation. 

The control system described in the preceding section is suitable for 
homogeneous or quasihomogeneous formations, where the structure of the 
producing strata is such that the distribution of inhomogeneities between 
any two nearby wells is constant or follows the distribution of stationary 
random events. 

The flow chart of a control system of this kind is shown in Figure 8.5. 
The basic elements are the grid model used to determine the corresponding 
coefficients  a« and a digital computer that calculates production schedules 
for each well. 

The difficulties associated with the slow variation of the well coupling 
coefficients are overcome by periodically updating the position of the 
oil-water boundary on the grid model. 

As the process drifts from the optimum or when the target figures are 
changed, the entire closed-loop control system is turned on (Figure 8.5). 
When the wells have been restored to the desired operating mode,  the 
computers are disconnected and only the local control systems and the 

P0-P=£P, atm 

FIGURE 8.4.   Transients in an 
oil-bearing formation. 
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data-processing system are left running.    The local control systems 
maintain the given operating mode in the interval between successive ad- 
justments,  and the information received from the wells through the data- 
processing system and through other channels is used to update the grid 
model.    When the need arises,  the computers are again linked into the 
system,  and the entire cycle is repeated.    Statistical forecasting techniques 
can be used to calculate the coefficients  a;i. 

Control computer 

Ws 

Data 
processing 
computer 

«4 
—A? ■I& — 

Well con' 
trol system 

fj>CJ>PJ- 

Control plant (oil 
reservoir) W, 

\ 

■O— 
FIGURE 8.5.   Flow chart of automatic control system 

The solution of the problem is based on the assumption of a rigid 
operating mode (see Chapter One).    It has been established, however,  that 
immediately following the disturbance (when a well is stopped or actuated, 
etc.),  the oil reservoir behaves according to a so-called elastic mode /75/. 
Although the processes in the reservoir may remain linear in the sense 
that the principle of superposition holds true,   linear programming in its 
standard form is inapplicable.    It is therefore again emphasized that our 
solution is valid for a reservoir in a rigid operating mode,  which is the 
predominant but not the only mode. 

§ 8.6.    METHODS FOR THE DETERMINATION OF THE 
CONTROL VECTOR AS A  FUNCTION OF TIME IN 
MORE COMPLICATED CASES 

In the preceding sections linear programming was used to determine 
the operation schedule for each oil well.    This approach is valid as long 
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as the controlled object (e.g.,  the oil-bearing formation,  ignoring its 
elastic properties) is described by a set of linear algebraic equations. 
The planning and production constraints were represented by appropriate 
algebraic equations,  and the solution was obtained in the form of a 
numerical programme, or schedule,  for each well. 

For objects with memory the control function cannot be obtained in this 
simple form,  but the problem is nevertheless meaningful for some more 
complex cases.    Let us first consider the new features arising from the 
formulation adopted in this section, although the problem itself is basically 
equivalent to that considered in the previous sections.   All the properties 
of the controlled object and all the constraints are known;   we seek a con- 
trol function,  i.e., the variation of the inputs as a function of time,  that 
minimizes (or maximizes) a certain criterion function.    The control time 
is often chosen as the criterion.    The problem thus reduces to a selection 
of a control function which ensures a minimum transient time for the given 
plant under the given constraints. 

The optimal solution in this case is to choose,  from among the control 
functions satisfying the given constraints,  one which moves the system 
from the initial to the final state in a minimum time.    This formulation is 
not different in principle from that used for most optimal control problems 
/21,53/.    The literature on the subject, however,  is mainly confined to 
single-variable systems /17, 25,28/.    P. E.Sarachik and G.M.Kranc /21/ 
solved the problem of minimum transient time for multivariable control 
systems,  but their solution is based on the results of Krasovskii /25/, 
Kirillova 111 I, and Kulikowski /28/,  originally obtained for single-variable 
systems. 

A remarkable feature of the above studies /17, 25, 28, 21/ is that the 
problem of optimum control is solved by methods of functional analysis. 
In our opinion, the application of functional analysis may prove to be 
highly promising, and we therefore reproduce the results of Sarachik and 
Krane /21/ in some detail. 

We are dealing with time optimal control of an absolutely controllable 
linear object with certain constraints /21/. Different constraints may be 
imposed on each input. 

The controlled object is described by the following differential equation; 

x = F(t)x(t) + D(t)u(t), (8.23) 

where x(t) is the n-dimensional state vector of the object at the time /, 
«(/) is the /--dimensional control vector,   F(t) is a nxn matrix, D(t) is a 
nXr matrix.    It is clear from this notation that the plant has r inputs and 
n outputs.    In general,  the system output is a vector y(t) related to the 
plant inputs by the equation 

y(t) = ii(t)x(t), (8.24) 

where n(0 is a mXn matrix. 
The initial state of the plant at the time t=t0 is described by 

x(t0) = x0. (8.25) 

By ytef(<) we denote the signal to be reproduced.    The constraints imposed 
on the plant inputs u{t) are given by 

l«,L = /|«((T)|''dT 
"l 

<£,-■ (8.26) 
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where 
Pi>l   and i= 1,2 r. 

It is significant that  pt and Lt may be different for each input,  i.e., for 
each /.    This means that the constraints on the components of the input 
vector depend on the inputs themselves;   thus,  for an amplitude-limited 
input Pi=l,  and for a power-limited input (some other «j) pj=2, etc. 

The problem is thus formulated as follows. Find an input u0(t) which 
satisfies constraints (8.26) and ensures equality of the output signal y (t) 
to the setting  y,el(t) at the time t=tt,  so that  T=ti — t >0 is minimum. 

Following N.N.Krasovskii /25/ we can give an alternative formulation 
of this problem.    Given the plant equations,  constraints,  and initial con- 
ditions,  find a control vector u(t) of minimum norm ||n||7 which ensures 
the equality j»(/1) = yef(/1)   in a predetermined time   /,.    The solution ensuring 
the fastest response is then determined from the solution of this problem, 
and the minimum time corresponds to the case when the minimum norm 
|| u ||„ is exactly 1 /25/. 

Using the Duhamel integral approach, we write the solution of the set 
of differential equations (8.23) in the form 

t 

x(l) = ®(t, t0)x0+ f®(t, x)D(x)u(x)dx, (8.27) 

where Q>(t,  x) is the fundamental matrix of the plant equations satisfying the 
condition d>(t, T)=£.    In/21/ it is called the transition  matrix. 

The output signal y (t) is thus given by 

t 

y(t) = n(l, t0)O(t, t0)x0+ f\i(t)<i>(t, x)D(t)u(x)dx. (8.28) 

Equation (8.28) can be simplified in the following way.    Let 

e(t)=y(t)-\i(t)®(t, t<,)x0 (8.29) 

and 

ff(t,x) = ,i(t)<S>(t, x)D(x), (8.30) 

where H(t, x) is the mXr matrix of weight functions of the controlled 
variables in all the channels;   e(t) is the difference between the actual out- 
put signal and the output signal caused by the initial disturbance alone, 
when no input is received for t>t0.    In this notation equation (8.28) is 
written as 

< 
e(t)= JH(i,x)u{x)dx. (8.31) 

To solve the problem, we thus have to find the control vector u{x) with a 
minimum norm || «||p satisfying the integral equation 

f H(t1,x)u(x)dx = e,Jt1), (8.32) 
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where 

The vector equation (8.32) can be replaced by m component equations 

/*,(*„ T)«(T)di = <W/('i) (8-33) 

(y = l, 2 m). 

Here «;(/,  T) is the /-th row of the matrix H(t, x),  and   *tef/(/i) is the /-th 
element of the vector Cd(/i).    Since the object is absolutely controllable, 
there is at least one control vector satisfying the above conditions at an 
arbitrary time   tu  and the vector with the minimum norm  ||M||P should be 
selected from among these alternatives. 

Let the set of control vectors satisfying (8.33) be uA.    Consider the 
functional 

<i 

fA(hj)=f AiCi. t)B(T)rft, (8.34) 
'. 

where uix) is an element of uA.    Hence, 

/ü(Ay) = Wi)- (8-35) 

Since  fA is a linear functional,  we will consider arbitrary linear com- 
binations of hj(t, T) of the form 

m 

*(W=SM/(W = y('i. *). (8.36) 

where X is an m-dimensional row vector,   so that applying (8.35) and (8.36) 
we write 

/A(*) = .M 2 hh)) = 2 VA(«;) = KefW; (8.37) 

this equality holds true for any k (tix) described by an equation of the type 
(8.36). 

Further solution of the problem is associated with the concept of the 
general norm of a vector /21/.    How are we to write the set of r constraints 
of the form (8.26) as a single constraint?   This can be done by defining the 
norm of the control vector u as 

||B||=max[K|p//A,l (8.38) 

Now,  if the single condition 

II«II<1 (8.39) 

is satisfied,  all the r inequalities (8.26) are fulfilled,  so that the single 
condition (8.38) is in effect equivalent to  r constraints. 

Since relations (8.38) are not very useful in their original form,  the 
solution can be simplified by further generalizing the definition of the 
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norm  of the vector u (t).    The most general norm  is defined as 

l«t=[|]*r'|«iC«] '• (8.40) 

where p> 1 and ||a,Hpj are given by (8.26).    The results of Kirillova/17/ can 
be used to show that for p-+oo the solution of the problem with a bounded 
||«||p approaches the solution with a bounded ||»||,  so that constraints (8.26) 
are replaced by the single inequality 

(8.41) IK|„<1. 

The solution of the original problem is thus obtained by first solving the 
problem with constraint (8.41) and then letting p-+oo. 

We now return to the solution of our problem.    Using (8.26) and (8.41), 
we obtain 

l*i l,i = /|A,(/„T)|*'rfT (8.42) 

and 

=[!*'«*<] • (8.43) 

where kt(ti,x) is the i-th element of the row-vector  k(tix) defined by (8.36), 
and qitq are related top,-, p  from (8.40) by the equalities 

and 
-1 + -L=i 
9, ^ Pi 

1 + 1 = 1. 
1^ P 

Consider the quantity ||/A||,  the so-called norm of the functional fA   /28/, 
defined by 

"^'"Hw}' (8.44) 

where k is from (8.36).    Using (8.36),  (8.37),  and (8.44), we find 

1        ) IIAII = niax| ,'^(<l)l 

1 |||2V 2M 
(8.45) 

Let X* be the vector whose coordinates minimize the norm   2 A.-i)    on 

condition Xeref(/,) = 1.    Then 

=mrMrm<- (8.46) 
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Under these conditions equation (8.37) may be written as 

11^11 = w (8.47) 

To proceed further, we require the generalized Hoelder inequality. 
Hoelder's inequality for sums is /33/ 

VP r „        -lift 

!°<p<l<[!HIIH 
and the equality is obtained if and only if 

a, = ft |ß/|"
_,signß/  for  i— 1, 2, ... , «, 

(8.48) 

(8.49) 

k being an arbitrary constant.    We are interested in Hoelder's inequality 
for the integral 

$ x(t)y(t)dt = $^Xi(t)y(t)dt. 
a a   < = 1 

We have to prove that 

fx(t)y(t)dt <   %Lr'lx,rPt S^I^'C, 

(8.50) 

(8.51) 

where 
p>\,   ?>1     and    1 + 1 = 1; 

\x, (<)| '[and ly^oT'lare integrable, and Z, are positive quantities.   Moreover, 

and 

for 

IWI 

IH = 

f\x,(tjf'dt 
a 

b 

f\y,(*)f'dt 

VP{ 

\lq. 

(8.52) 

/»,>!.    q,>\,    -i~|-JL=l. 

We first prove that inequality (8.51) reduces to an equality if and only if 

*; W = *41 y^p'ly, (*)!*<   sign y^*) 

for any a</<6 , any »=1 «, and an arbitrary constant k. 
Hoelder's integral inequality is generally written in the form 

(8.53) 

VIP r  » 

fx(t)y(t)dt <   f\x(Wdt        /|y(/)|*d/ (8.54) 
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with/>>l,   q>l,   7 + 7=1   and integrable |x(*)|" and   \y(t) |«; the equality 

is obtained if and only if 

x(<)=*|ywr,signyW. <8-55) 
A being an arbitrary constant. 

It has been proved /21/ that these results hold true for p=land q=\.   It 
has been further established /21/ that Hoelder's inequality for sums (8.48) 
and condition (8.49) hold true for p = 1 and q = 1.    To obtain Hoelder's in- 
equality for the integral (8.50), we note that 

/2*,Wy<W^ <]£ J*iWy*W<« . (8-56> 

and the equality is obtained if and only if 

*/Wy<(0>0   [or Xi(t)y,(t)<.Q\ 

for a<<<& and <=1, ..., n. 
Using Hoelder's inequality in the form (8.54), we find that 

(8.57) 

jxt(t)yi(t)dt <l*il,J|yitJ 
(8.58) 

for Pl>\, q,>\ and-^-+y-=l, where |*,(')lPj and |y,W|?/ are integrable. 

Using (8.55) we find that (8.58) reduces to an equality only if 

X,(t) = K,\yi(Wi signy,(0    for  a<<<*. 

Substituting (8.50) and (8.58) in (8.56), we find 

(8.59) 

jx(t)y(t)dt <2l*,|P(|y,|,J. (8.60) 

If (8.59) holds true for any i=l n and if all Kt have the same sign, 
condition (8.57) is satisfied.    This means that the equality in (8.60) is 
obtained if and only if (8.59) holds true for any J=l, .,., n and all Kt have 
the same sign. 

Let 
11*11 

and 

U •*< llp( x'=—rr 
yt=iilyt\tf 

(8.6i; 

where £,- is a positive constant. 
Kt and £,• being positive, we have 

n 

2 ^y< = g*,y, (8.62) 
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Using (8.48) and (8.49), we find 

n IT" illp r" l'" 
(8.63) 

where p>l, <?>1 and—+—=1,  and the equality in (8.63) is obtained if and 

only if 

•*f=*|y<r' 'signy, (8.64) 

for all i, k being a positive number.   Since  x{ and y{ are positive,  con- 
dition (8.64) takes the form 

x(==£yj-i. (8.65) 

Substituting (8.61) in (8.63) and making use of (8.60), we obtain Hoelder's 
generalized inequality in the following final form: 

Vli 
(8.66) 

Inequality (8.66) reduces to an equality if and only if (8.60) and (8.63) 
are fulfilled.    This means that the following two conditions must be satisfied: 

(a) all Kt are of the same sign; 
(b) relations (8.59) and (8.65) hold true. 
Consider relation (8.65).    We have 

Xi^LT'lxti^LT1 f\x,tof'dt     = 

= kyr1^kL\-l\yit'l
l- (8.67) 

Inserting for |*,-| in the integrand its expression from (8.59), we find 
L? I*«IK;/"=*I'",W1 (8-68) 

or,  solving for \Ki\, 

|^| = ^||</,.|P   for    i=l, 2 n. (8.69) 

For this reason,  if Ki in (8.59) is chosen so that (8.69) is satisfied, 
(8.66) is fulfilled automatically.    Ki may be either positive or negative; 
the only point is that they should invariably be of the same sign.    This 
means that (8.69) and conditions (a) and (b) can be replaced by a single 
condition 

for all i=\, ..., n. 
Substituting (8.70) in (8.59),  we finally obtain 

*,« = *4|y,£f,|0,(or,"l8*n*W 
for a</<6 and all »=1, 2, .... n. 

(8.70) 

(8.71) 
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We now return to our original problem.    Consider the functional 

'■ 
fAm=fk'(ti,T)u(T)dx. (8.72) 

it 

Using Hoelder's generalized inequality, we find that 

l^(**)l<I**U«llp; (8-73) 

and seeing that   fA(ft*) = X**ref(*J = 1 we have from (8.47) 

Inequality (8.74) is thus a necessary condition for u(x) to be an element of 
the set Uji. 

From (8.74) we can now derive a necessary condition for u(x) £uA to 
have a minimum norm II« ||p ,  specifically: 

which is obtained if the equality is taken in (8.74) and (8.73).    The relations 
obtained from Hoelder's generalized inequality show that the equality in 
(8.74) is obtained if the components UJ(T) are of the form 

ui(x) = kL'ilk*(~'''\k'(ti, Tjf'-'signAlto, T). (8.76) 

Substituting (8.76) in (8.75), we find the constant k, 

k = —1-—r. (8.77) 
(11**11,)' ' 

Equation (8.75) thus holds true if and only if 

«J(T)=-^-ri*;c:'ii*:(/i.t)'r'|8ign*:(/„ -o. (8.78) 

From the results ofKirillova /17/ we further obtain (putting q=\ in 
(8.75), which corresponds to p->-oo ) 

"i(tr = j^j\&t~t
qi\k'<^< tf1"'! »lgn*f (ft. t), (8.79) 

where the asterisk marks those quantities which are determined from 
X% i.e., 

1**1, = min 2Z.,||H, (8.80) 

on condition Xe,c!(t1)=\ . 
To solve the original problem of time optimal control, we have to study 

the effect of the constraints.   As has been shown in the preceding, all the 
constraints can be summarized by a single condition imposed on the norm 
of the control vector: 

|«kl. (8.81) 
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Moreover,  ior p = 00, q = \,  and 

l«*l>-jF|r- (8-82) 

Hence it follows that for any   /, the problem is solvable if and only if 

in>l- (8.83) 

Let I ft* II, be a continuous function of   tt;  the minimum timeT0=t' — t0is 
then obtained for the smallest    ti — t*,  such that 

1*1, = 1. (8-84) 

and this fact is used in the determination of t\.   If we now apply the solution 
of (8.79) with the minimum norm,  we find for ti — t] 

a   =■ 
1 

I** II, (8.85) 

so that the solution given by (8.79) satisfies both the constraints and the 
final conditions in the shortest time and is thus time-optimal.    Using (8.85) 
we find 

«i(o*=iii*;t;*,i*;w./)rr,«ign*;w. 0. (8.86) 
where k] is determined by solving (8.80) for V and substituting the solution 
in (8.36).    From (8.85) we then find the minimum   /(  equal to   t\. 

We have considered in some detail the theory and the proof of /21/ for 
the determination of a control function (as a function of time) ensuring a 
minimum transient time for the problem at hand.    Despite the apparent 
complexity of the method and the introduction of mathematical techniques 
which are unfamiliar to most engineers,  it seems to us that the effort is 
justified by the simplicity of the final solution.    We would like to comment, 
however, on the practical value of the result.    Here the vector of plant 
inputs (the control vector) is specified as a function of time,  and not as a 
function of the plant outputs.    This is equivalent to setting up an open-loop 
control system, with all the consequences.    But there is more to it.    The 
mathematically derived input vector should be implemented in practice, 
and this requires the introduction of special equipment whose properties 
have not been allowed for in the mathematical stage.    This is a highly 
significant point in our opinion,  since the complete system,  including the 
equipment that implements the control function,  is essentially different 
from the initial system where only the plant properties are relevant.    This 
remark applies to all solution techniques which produce the control vector 
as a function of time.    Further on in this chapter we will consider methods 
for the derivation of control vectors as a function of the output (controlled) 
variables. 

§8.7.   APPLICATION OF METHODS OF 
VARIATIONAL CALCULUS 

In this and the following sections we will consider the construction of 
multivariable control systems whose properties satisfy a certain optimality 
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test.   A frequently used optimality test is minimizing the integral square 
error of some function of the controlled variables, their derivatives, 
and plant inputs /30, 66/.    The general problem is formulated as follows. 
For a controlled object of known characteristics,  choose the control 
system, and in particular the controller,  so as to satisfy a certain 
optimality test.    This formulation is fully applicable to multivariable con- 
trol systems.    In the latter case, however, the optimality test should 
correspond to the   set   of   all   controlled   variables,    and not to 
some individual   variable. 

This approach was developed by A.M.  Letov /30/ for the synthesis of 
controllers in single-variable systems,  and he called his technique the 
method   of  analytical   controller   design.   His results are used 
here insofar as they are applicable to multivariable control systems. * 

The mathematical formulation of the variational problem is the following. 
Let the controlled plant have n controlled variables Y{ and m controllers xs. 
Here m> n.   A control system is hooked up for each controlled variable. 
For simplicity we will first assume that each controlled variable is described 
by a first order equation.    Seeing that the controlled variables interact 
through the plant, we write for the i-th variable 

n m 

Y'i = + a,,lYi + ^ialkYk-ir'2l^jkxk. (8.87) 

Here a is taken with its algebraic sign.    Taking i'=l, 2, .... n, we obtain 
a complete set of differential equations describing the dynamics of a multi- 
variable plant. 

The initial conditions for (8.87 are 

for t = 0 

for t — oo 

[Yt =Ym 

{ Xj = Xj0 

\Y,=Yi{ 

\ XJ^XJ, 

(/=1,. ■ , n), 

(y=i, • ., m); 

(« = i, • ■ , n). 

(/=!.. ., m). 

(8.88) 

This set of equations can be written for deviations of the plant inputs and 
outputs.    Taking Y^Yu+AYi and considering the deviations only, we should 
replace Yit Yk, and xh in (8.87) by AYit AYh and Axh.    The final state of a 
stable system is then described by AYi=0, and if the input deviations are 
reckoned from a new steady-state level, we have 

Axt = 0,    t = oo. 

In the following we will be only concerned with the deviation of the plant 
inputs from a certain prescribed value, but the equations will be left in 
the original form (8.87), with Yu  Yk, and xh interpreted as the deviations. 

The initial and the final state are then 

for ,^ i •-. -y.   «-' * ..{■ 
Xj = Xi0       (/=1, ..., m); 

f Y, =0 for  < = oo j^ = 0 
('=1 «), 
(y'=i m). 

(8.89) 

Analysis and synthesis of multivariable control systems in a somewhat different form from that presented 
here were carried out by Ma Fu-wu as part of his post-graduate studies under the direction of the author. 
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The plant inputs Xj are the controller outputs.    The controller structure 
and parameters are not known at this  stage.   Our problem is to  choose 
these unknowns so that the control  system conforms to a certain optimality 

test. 
The variational problem is thus given the following mathematical formu- 

lation.    Suppose that the criterion function of the optimality test is the 
integral 

where 

Y(XV..., XJ = jVdt, (8.90) 

(8.91) 

The integral (8.90) is a functional defined on a certain class of functions, 
and its value is the integral square error with constant weights ah, &,- that 
the system acquires during a transient /* = oo.    Our aim is to find the 
analytical expression for the control function 

<p(y„ ..., y„ xv .... *J = 0, (8.92) 

which,  in conjunction with the original set of equations (8.87),  constitutes 
a stable system and minimizes the functional (8.90).    Meanwhile we are 
dealing with a linear system,  or to use the conventional terminology, 
equations (8.87) are defined in an open domain.    Lagrange's function is 

H= V+ 2 X„ \Y'k - 2 alkYt - 2 h*xi (8.93) 

H= 2 abY\ + 2bjx) + 2h \r»- • 2 <*«K, - 2 ß«-*/L (8.94) 
(=i j=i J 

where X*  are Lagrange's multipliers. 
We have 

dH = 2asi/* — J] Mi*.      -^ = X*' 

dH 
(8.95) 

The Euler-Lagrange equations are thus 

X'k — 2a*</* — 2 ^IOI*I 

(A=l, •■•, n; 7=1, ..., m), 

(8.96) 

and these equations, together with (8.87), define the properties of the multi- 
variable control system.    Proceeding along the same lines as in /30/, we 
can find the controller equations for the multivariable system. 

Consider the case of a multivariable control system with two controllers 
and two controlled variables interacting through the plant. 
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The plant equations are 

y'i = a21</l + a22#2 + $KX2- 
(8.97) 

Unlike the general case,  we assume that the controllers do not interact, 
i.e., Pik=Q, i+k.    The functional to be minimized is 

y (*i. x2) = / V dt = f [a,y\ + a2y\ + bxx\ + b2x\\ dt. 
o o 

Lagrange's function for this example is 

H= a,y\+a2y\+b,x\ + b2x* + X, [y[ - a^ - uny2 - plI^Ij -+ 

+ K \y'l - «21^1 — «22% — $VXA- 

(8.98) 

dH 
dy, --2a1yl — X1an — X2a2v 

— = X 
dy[        " 

-g— = 2a2y<2 — Xfln - ■ AoCtof 

dH 

dy. 

dH       n. 
— ^iPn 

dx, 

dH       „, 
•g^ — to2x2 — A2ß22 

dx, 

(8.99) 

(8.100) 

(8.101) 

(8.102) 

(8.103) 

(8.104) 

(8.105) 

(8.106) 

(8.107) 

From (8.100) —(8.107) and (8.97) we write the Euler— Lagrange equations 

K = 2aiyi — Vii — han> 
K = 2*02 — \al2 — X2a22, 

2b]xl — Vn = 0, | (8.108) 
£.0^X2 — ^2r22 == ^* 

y[=aiiyi+avt)i+*iix\> 

!/2=a21^+a22% + p22Jt:2- 

The determinant of this system is 

(8.109) 

After simple manipulations, we obtain the characteristic equation in the form 

*, V4 - («n*A+ a22*A + 2a>2a2A62 + a2*$2 + 

+ «Ml) / +- (°?1°I2*.*2 - 2a
12a21

an«22*l*2 + 
"I" <¥*nß22*l + «1°!$ A + °?2a2M + <¥Wl + 

+ «2«l,ß?1*2 + a^.N«) = °- (8.110) 

p—«11 — «12 -P11 0 0 0 

— «21 P— «22 0 — ß22 0 0 
0 0 0 2*2 0 — ß22 
0 0 2», 0 -ßn 0 
0 — 2a2 0 0 «12 P+ 022 

— 2a, 0 0 0 P+«ii «21 
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The parameters of equation (8.110) should be chosen so as to ensure 
stability of the system.    First note that the signs of the coupling coefficients 
a,2and  %, depend on the properties of the controlled plant.    These co- 
efficients generally have the sign minus,  arid in what follows we indeed 
assume negative a,2 and a2,.    Strictly speaking,  the coupling coefficients 
may be inherently positive or they can be made positive,  as in anelectrical 
system with mutual inductance.    These cases are not considered here.    In 
the following we assume that the plant is intrinsically stable (without a 
controller).   Therefore, given the plant equation in the form (8.87), we 
conclude that cc« are also negative.    The weights   6, and   h are positive by 
definition, and so only the sign of the coefficients   ßn and ß22 is unknown. 
We see from (8.110), however,  that this uncertainty is of no consequence 
at this stage,  since  ßn and   ß22 are squared in the coefficients of (8.110) 
and their sign is therefore irrelevant.    Our preliminary analysis thus 
shows that the expressions in parentheses in (8.110) are inherently positive. 
The minus sign in front of one of the coefficients in the free term of (8,110) 
does not affect this conclusion,  since clearly a(f>ai),;   but even without this 
condition it is readily seen that in the final account the coefficients of 
(8.110) are positive. 

Let   A0 stand for the coefficient of p\ /4,for the coefficient of p2,  and 
Ai for the free term in (8.110).    Equation (8.110) then takes the form 

A0p*-Auf + Aa = 0. 

Substituting 

we find 

and the solutions are 

A0t?-A&+A2 = 0, (8.111) 

It is also easily seen that A\>AA^Ai,  so the roots of (8.112) are positive 
numbers   & and   &.    The original characteristic equation thus has four 
roots: 

and .Li/"?- 
(8.113) 

We wili only use the roots   p, and pt, having Re p<0.    The solution for the 
inputs and the outputs in this case is 

J/i= 2 CA(/>,)eP<'. (8.H4) 
1 = 1, 3 

Vt= 2 Cj^(Pj)e"j', (8.115) 
>=1,3 

*2=
P

v23CA(/\Kv'- <8-m) 
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Here At, A2, A3,  and  A4 are respectively the minors of the determinant of 
(8.110) for the first element of the first row, the second element of the 
second row,  the third element of the third row,  and the fourth element of 
the fourth row. 

In order to find xu x2 as a function of yu 2/2, we should eliminate time 
between (8.114)—(8.117).    The determinant of the controller equations is 

M/>i) A,(p3) y, 

As (Pi) A2(/>3) VI 

A3(P,) A3(p3) *i 

A, (Pi) A4(/>3) *a 

= 0. (8.118) 

We see from (8.118) that the equations for xt and *2 are linearly- 
dependent. The equation of the controller having xt as its output is 
obtained from 

A,(p.)   A,(p3)   0i 

A2(Pi)   A2(p„)   y2  =0, 
A3(p,)   A3(p„)   Jf, 

whence 

„ _ [A3 (p.) A, (p3) - A„ Q>,) A3 (p,)] y, - [&, (p,) A, (p,) - A, (p3) A3 (pQ] y, ,     .    g) 
X*— Ai(Pi)A.(p.)-MP.)M/>a) V    " ' 

It is thus clear from this equation that the optimum in the sense of our 
analysis is ensured if the controller action is influenced by the two con- 
trolled variables   yt and  y2.    This confirms our earlier conclusion that 
interacting control produces an extremum,  and a noninteracting control 
system will therefore give poorer results from the aspect of our optimality 
test.    It is perfectly obvious that the equation of the second controller is 
also a function of both controlled variables   yt and  #2. 

Another highly significant conclusion from this example is the following. 
Substituting for   A{(pj) their values, we obtain a controller with infinitely 
fast response.    This result was also obtained by Letov /30/ in an example 
of analytical controller design for a single-variable system.    The essential 
point is that a system of this kind can be built only  using structures which 
are stable at infinite gain. 

In our discussion of multivariable control systems with infinite gain 
stability we have shown that interacting control, under certain conditions, 
has better dynamic response than noninteracting control (see Chapter Four). 
In the present chapter, in solving the problem of a controller extremizing a 
certain criterion function, we have established that interacting control is 
essential for this purpose and that the system must have infinite gain 
stability.    This clearly gives collateral support to our previous assertion 
that structures stable at infinite gain should be preferred in multivariable 
control systems. 

So far we have been dealing with a controlled plant whose outputs are 
described by first-order different equations.    The controller selection 
procedure, however,  is quite general and can be used with output equations 
of higher order.    In this case,  each of the equations of e-th order,  say, 
can be reduced to v first-order equations, and Lagrange1 s function and 
the variational equations are then written for each of them separately. 
The mathematical manipulations are fairly tedious even for the simplest 
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case of a two-variable system described by first-order equations with 
inertialess controllers.   Although the difficulties are merely technical and 
can be easily overcome with the aid of modern computers,  the results are 
far from being easy to grasp,  especially for the more complex cases. 
Therefore, following /30/, we will consider some applications of dynamic 
programming to the design of multivariable control systems. 

§ 8.8.    BELLMAN'S  PRINCIPLE  OF OPTIMALITY 
AND THE  FUNCTIONAL EQUATION 

In this section we will describe some results due to R. Bellman /7/, 
which will be used in the following.    The brief exposition here cannot be 
regarded as a substitute for reading Bellman's book /7/,  but it will 
enable the reader to follow the synthesis method proposed for multi- 
variable control systems minimizing or maximizing (according to the 
particular test used) a certain criterion functional of the system as a whole. 

Letov /30/ used Bellman's dynamic programming method for analytical 
controller design in single-variable systems.    In addition to Bellman's 
results, we will also apply here some of Letov's techniques and conclusions. 

1.    Multistage allocation process and optimal policy 

We start with a certain limited quantity of resources x that can be used 
to buy equipment of two kinds, A and B.    If a certain quantity of resources 
()<:#<* is allocated to purchase equipment A,  and the remaining x — y to 
purchase B,  the total return,  expressed in terms of labor,  say,  is 

RAx,y) = g(y) + h(x-y). (8.120) 

Here g(y) is the return from the allocation y,  and h(x — y) the return from 
x — y.    The problem is to choose such y in the interval [0, x] that the return 
R,{x, y) is maximized.    The maximum return is thus 

Rl(x)= max  \g (y) + h (x - y)\. (8.121) 
0<y<x 

If this problem is solvable, we have a single-stage allocation,  to use 
Bellman's terminology /7/. 

Consider a multistage process.    Suppose that after some time in 
operation,  the equipment is sold,  bringing ay money units as the prices 
of  equipment A ( 0<a<l)and b(x — i/)units as the price of B.    The first 
stage thus ends with an additional quantity of resources   xit where 

xl = ay + b(x — y). 

These resources   xt are again used to purchase equipment.    In this purchase 
j/,  is allocated to class A and xx — #,to class B;  the return is thus 

g ((/,) + ft (•*!—J/l), 
where 0<^<A:I.    The total return of the two-stage decision process con- 
sisting first in the choice of y and then the choice of  yt is thus 

Kt(x, y> yi) = g(y) + h(x-y) + g(yl)-\-h(xl-y,), (8.122) 
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where 

xt = ay+b(x — y)      ] 
and (8.123) 

0 4.y<x,   0 <(/,<*,. I 

The maximum return is attained if y and  y, are so chosen that 
Ri(xi, y, yi) is maximized under constraints (8.123). 

If the buy-and-sell process is repeated «times, we obtain an «-stage 
allocation process with the total return 

where 

R«(*v y< yi. •••• yn-i)=g(y)+>i(x-y)+g(yJ+ (8.124) 
+ h(x1—yl)+ ... +g(y«-i)+h(x„-1 — y„-i), 

Xi = aj/,_,-|-b(je,., + (/,_,) for   /=1, 2, ..., « —1, (8.125) 

J,0 = J,   and x0 = x  , (8>126) 

0<</<JC,   0*£y,4-Xi      (' = 1 A —1). 

The maximum total return is attained if the y,  are so chosen that Rn 
is maximized under constraints (8.125) and (8.126).    The fact that the 
problem is essentially an «-stage decision problem can be applied to 
simplify the solution and primarily to reduce the number of variables. 
It is significant that in the ft-th stage the problem can be solved if yh-i 
alone is known.   The value of yA_, depends on *,,_, and the remaining N — k 
stages. 

Hence,  to decide on a solution for the ft-th stage it is important to know 
the resources available at that stage and the number of stages to go;   in 
other words, the problem is as if formulated anew at each stage, with a 
given number of stages and given quantity of resources.    Following /7/, 
we introduce two new concepts.    The sequence of solutions (y, y,,  ..., yn-t) 
is called a policy.   A policy maximizing the total return according to a 
certain criterion function is called the optimal   policy. 

2.    Formulation of the problem using functional equations 
and Bellman's principle of optimality 

Let fn(x) be the total return for an /z-stage process with initial resources 
x and an n-stage optimal policy, n=l, 2  

We will derive a recurrence relation for fn(x)znd }n+i(x).    Let the initial 
allocation be yn,  and we consider a (n+l)-stage process.    If the first-stage 
return is g(y)+h(x — y), the total return after the (n+1)-th stage is g{y)+h(x-y), 
plus the n-stage return,  assuming jc,=a</+&(x — y) as the resources after 
the first stage.    The essential point is that,  irrespective of y, the resources 
ay+b(x — y) are recovered using an optimal allocation policy in the next 
n-stages.    The total n-stage return will then be f„[ay+b(x — y)]. 

Hence,  the total return after the (n+l)-th stage, with the initial alloca- 
tion y between 0 and x,  is 

g(y) + fi(x-y)+fn[ay+Hx-y)l (8.127) 
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Now, y should be chosen so as to maximize (8.127).    Since themaximum 
is numerically equal to the function fn+i(x),  we obtain the basic recurrence 
relation 

/.+,(*)= max  [g(y) + h(x-y) + f„[ay + b(x-y)]), (8.128) 

«=1, 2, ... 

Let us now compare the two formulations of the same problem.    In the 
first formulation,  we were expected to choose yt, £= 1, ..., n—1 , maximizing 
Rn(x, y, yu ■ ■ ■, y-n-\),  and in the second formulation we had to select n 
functions  /„ for one y.    Bellman /7/ has shown that the second formulation 
is much more convenient for practical calculations and readily brings out 
the dependence of the solution on various parameter changes.   In the second 
formulation, the function f„+t(x) can be determined if f„(x) alone is known. 
We thus arrive at Bellman's   principle   of   optimality:   an 
optimal policy has the property that whatever the initial state and the initial 
decisions are,  the remaining decisions will constitute an optimal policy 
with regard to the state resulting from the first decision. 

3.    The fundamental functional equation 

Consider the following problem:   maximize the functional 

with the constraints 

and 

dx 
dt = 0(x,y),   x(0) = C 

0 < y < x. 

S(y) = JF(x,y)dt (8.129) 

(8.130) 

This is an ordinary variational problem which is solved by the methods 
of classical variational calculus, with certain conditions imposed on the 
functions G(x, y) and F(x, y). 

Let us consider this problem from the aspect of dynamic programming. 
R. Bellman has suggested that the variational problem can be treated as 
a continuous multistage process.    In this approach we are not interested 
in finding y as a function of t for 0<*<:r but rather  Y(0) as a function of 
the initial state X{0)—C and the time interval T;   in other words,  we are 
looking for a functional equation 

f[X(0), T] = f(C, T)^maxV(y). (8.131) 

Let F{x, y) and G(x, y) respectively ensure the existence of a maximum and 
the continuity of f (C,   7") as a function of C and  T.    It is moreover assumed 
that I has continuous partial derivatives with respect to C and T in any 
bounded region C > 0 and T > 0. 

Along the extremal y we have 

P+T 

f(C,p+T) = fF(x,y)dt + j F(x,y)dt. (8.132) 
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Fort=p, x is equal tox(p), which is found from the equation 

£ = 0(*,„). 
Let x(p) = x(C). 

According to the principle of optimality we obtain along the extremal 

j F(x,y)dt = f[C(p),T\. (8.133) 
p 

The integral (8.129) is thus replaced by the equation 

f(C, p + T) = JF(x, y)dt + f[C(p), T\. (8.134) 
o 

Now y is chosen so as to maximize (8.134).    Hence 

I  p ] 
}[C, p+r]= max     fF{x, y)dt + f[C(fi), T\\. (8.135) 

0<»<j:lg ' 

Let F(x, y) be continuous in x and in y,  and have continuous partial 
derivatives with respect to C{ fc) and T(fT);   if moreover y is a continuous 
function of t,  then for small p we may write 

f(C, p+r) = /(C, n + p-f^ + oM (8.136) 
C(p) = C+PG(C, v) + o(p), (8.137) 

f(C(p), r) = /(C, n+pO(C, v)|^ + o(p) (8.138) 

and 

jF(^,y)^=pF(C,v)+o(p). (8.139) 
o 

Here v = t/(0) = v(C,   7").    In the limit,  as p-*0, we find 

fr= max  \F(C, V)+G(C, V)Ä1. (8.140) 

In our earlier notation, taking as the criterion function the integral 
00 

f F(x, y)dt   with the constraints 
o 

§ = 0(x,y), 

we write Bellman's functional equation in the form 

min[F(x,y) + G(x,y)£] = fT. (8.141) 

The material of this section is sufficient for further discussion. 
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§ 8.9.   APPLICATION OF DYNAMIC  PROGRAMMING 
TO THE SYNTHESIS OF MULTIVARIABLE 
CONTROL SYSTEMS 

Consider a controlled object with n outputs (controlled variables) 
interacting through the plant and m controlling inputs;  here m>n.    The 
controlled variables are again denoted by yt and the controlling inputs 
by Xj-,  here £= 1 n, and /= 1, ..., m. 

The equation of motion of the system can be written in matrix form as 

% = AV + BX, (8.142) 

where A is the matrix of plant parameters and coupling coefficients, B 
the matrix of controller coefficients,   Y and X are column vectors.    For 
*=0, we take Y=Y(0). 

The criterion function is the integral 

Y(X)=fVdt. (8.143) 

The problem is to find a control function X as a function of the plant 
states which minimizes the functional (8.143) /30/. 

In (8.134) it is implied that each output is described by a first-order 
differential equation.    The perturbation equation can be easily written for 
the general case and then reduced to the form (8.142).    The problem then 
can be stated as follows.    Suppose that the i-th output is described by an 
equation of  V(-th order.    Reducing the  Vj-th order equation to V4 first- 
order equations, we find 

-^ = SaJ'» + Sa,pKp-2ß„*y, (8.144) 
t=i p=i /=i 

K* = -^3T^      </=1 «:*=1. ■■.. V|_J. 

For simplicity we will henceforth assume that each output is described 
by a first-order equation.    In principle this restriction is  of no con- 
sequence,  since in the more general case the equation is reduced to the 
form (8.142) and the synthesis methods derived in the following are directly 
applicable. 

In expanded form (8.142) is written as 

4£ = Sa'*K*+SM0       (' = ! *>• (8.145) 

r;w=o,     K,(0)=r,„. 

To simplify the notation,  (8.145) can be written as 

4^ = 0,(^1. ..-. r„ Xit ..., *J = Q,(K, X) (8.146) 

(/=1, ..., n). 

The criterion function is the integral (8.143) with 

V^JZatf+SbjX). (8.147) 
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Here a,-  and  bj are known nonnegative weight coefficients,  whose values 
are chosen according to the desired sharpness of the minimum in each 
controlled variable. 

Solution for an open domain 

In an open domain 0(Y, X) the function is minimized over a class of 
functions where  Xt and   Yt are continuous and continuously differentiable. 

Following the procedure of /30/ for single-variable systems, we solve 
the problem for multivariable control systems using Bellman's dynamic 
programming method. 

Let the functions X=X(xi xm) minimize the functional (8.143).    It is 
clear from the preceding discussion of Bellman's results that the minimum 
of I(X) is a certain function ^(K0)of the initial state of the system.    We may 
therefore write 

min/(A,) = iKr„). (8.148) 
x 

Bellman's conditions for our case take the following form.    For a 
positive p we may write 

co p CO 

t(X) = fVdt = fVdt+fVdt. (8.149) 
0 0p 

By Bellman's principle of optimality it is clear that, irrespective of the 
choice of the function X [0, p] over [0, p], the function X [p, oo] over [p, °o] 

CO 

minimizing the functional    ( Vdt can be chosen as if minimizing the 

functional   f Vdt, with the difference that  Yt takes on the role of the 
o 

initial state at the time /=p.    Hence, 

oo 

min   [Vdt = W>)- (8.150) 
X[P.oo]^ 

Therefore, by (8.149) and (8.150), 

i|!(K0)= min 
X|0, Pl^jf 

/ Vdt + WA (8.151) 

Let p be sufficiently small.    Then,  if the function Mp is differentiable 
with respect to Yt for tfg  [0, p\ we have 

+ (KP) =+[I'o+OPl'= + (J'B) + SOiP(#-)     +o(P)- (8-152) 

K0 + Op = (r01 + 0,p, K02 + G2p Y0n + 0„p)     (0 < £ < p). 
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As for the residual term   o(p), we have for p->-0 

iim^e)=o. 
P-M>     P 

Equation (8.152) can be written as 

*(K0)= min 
X[0, p] 

n 

Vp+WJ+J^Ofifä)^ +o(p) (8.153) 

For p-M) the interval [0, p] contracts to the single point 0,  and the choice of 
the function X [0, p] over this interval reduces to the choice of X(0). 

Passing to the limit as p->-0, we obtain the equation in explicit form 

min 
x, /=> 

Saty\ + SV? +S  S«<*»* + 2$'ixi jr 
;=1 

dy, 
(8.154) 

In order for (8.154) to give a minimum in   xt, the derivatives of (8.154) 
with respect to xi xm should vanish.    For the solution of our problem 
we thus have m+\ equations,  that is 

i=\ j=\ <»i \ft=i j=i        /     i 
n 

/si 

From (8.156) we have 

' (=i 

Substituting ^ from (8.157) into (8.155), we find 

(8.155) 

(8.156) 

(8.157) 

n      m n 

(=i ;=i    ' /=i 

We have ended up with a linear partial differential equation. Its solution 
gives the sought relationship between the controller outputs and the con- 
trolled variables,  i.e., the controller inputs. 

Example 

Consider a controlled plant shown in Figure 8.6.    The controlled 
variables 1',  and  Y2 interact through the plant,  as is shown by the direct 
coupling in the block diagram. 
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The gain parameters and the time constants are Kn, Kn, T\\, ^22 for each 
self-variable and K12. ^21, Tl2, T21  for the coupling elements.    In what follows 
all the variable symbols stand for the deviations of the corresponding 
variables from steady-state values.    The plant equation in Laplace trans- 
forms is 

''.(^T&^W + W^* 
VM-- K21 

1 + T„p Mp)- A23 
1 + T,2p \h{p)> 

(8.159) 

(8.160) 

where  HI is the controller input for the first variable,    H2 ditto for the 
second variable. 

The controller inputs and outputs are related by 

and 

\ii(p) = Klxl(p) 

M-2 (/•) = A'zATj (/>). 

(8.161) 

(8.162) 

Eliminating (ij, (^between (8.159) and (8.162) and changing back to the 
originals, we write 

^\J"u -jjjr+C11 + 7\a) ~äf+0i= ^l^n^is ~5T + 
dx2 

TvtTn —£p- + (Tm-\- r21)-j£- + y2 = KiKn'22—JF + 

+K2K22T21 "JT" + KiKi\Xx + KiK^i- 

To simplify (8.163),  (8.164),  we substitute 

i\)\ dyi d*l 
dx% 

w—y™ -ar—y™ Tt        12' ~~dT — xn 

(8.163) 

(8.164) 

(8.165) 

In this notation,  equations (8.163),  (8.164) are written as 

Vn = — ttll</l2 — al2</l + 013*12 + «14*22 + a15*t + «K^. 

^I=f/l2. 

#2= f/22» 

^2 == "^22 > 

f/22 == — «22^22 — ^21^/2   r ^23-^12 ~T~ #24^22 "T" #25**I    i   ^26^2' 

(8.166) 

where 

„   _ r„ + r,2 a"-   7-„r„ 

«24 s;   ss        t 
*11'U 

  T»-f" Til a*>-   r2!1r„ 

«24-     T„T„    ' 

*"— r„rlt 

1 

«25 = 

7-227-2, 

7*22 7« I 

O 

  KiKi\ Tlt 
3~    T-,,7-,, 

16"" rnr„ • 

«23 = 
KiKtt^u 

»26    T    T— * 
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> 

. 

K/2 
1+T,2p } 

> 
f<22 

7 

P*!EL > A,W * ■<*>■— 

FIGUR 
system 

E 8.6 A urn invariable control 

The problem is stated as follows.    Find the control vector   xu xX2, x2, x22 

as a function of the system outputs  </,, y12, y2, y22 that minimizes the functional 

OO 

1 = / K*'?+ai2 (y*u)+a22yl+Si (y^f+ 

+ ßn^+ßl2(^ + ß22^ + ß21(^]^ (8.167) 

in an open domain N(yit yu, y2, y22, *i, xl2, x2, x22).    Here  cc« and ßift are known 
positive numbers. 

The corresponding functional equation is 

«»110. + »12*4 + «2202 + «»21022 + ßll^l + ßl2*?2 + ß22
JCl + 

+ß2.4i+(- "1.012 - «120i + a13x12+aitx22+aI5x, + aiex2) ■££- + 

+ (— «22022 — «2102 + «28*18 + «24*22 + «25*1 + «26*2) 4^~ + 

+ 0,2^ + 022-g—0. (8.168) 

Additional equations are obtained by setting the derivatives of (8.168) 
with respect to xt, x12, x2, x22 equal to zero.    We have 

w. r. t. xx 

w. r.t. xn 

w. r.t. x2 

w. r. t. JC22 

Hence, 

2ß„*, + a15|L + a25^ = o, 

di|> 
2ßl2*12 + «13 0^7 + «23 S^ — 0: 

2ß22*2 + «16^+« 
ö*     l   »       *L=0 

2ß2,*22 + «,4|^ + «24^ = 0. 

 L_r. J±_ , „   *n X»-      2ß,aL
ai3d</12+«23ö^7j. 

*22-   2ß2, r
i4d»i,+a«"5^rJ- 
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(8.170) 

(8.171) 

(8.172) 

(8.173) 

(8.174) 

(8.175) 

(8.176) 



Substituting xv   x2,   xl2,  and x22 from (8.173)—(8.176) into (8.168), we find 

«110? + «12^2 + «22^2 + «21^2 + P„ [~2^ («15 ^ + «25 ^)f + 

+ '-[-i(-Ä+-Ä)],+ 
+fc[-irK&+';&)],+ 

+ [- any„ - aisy, - ^ (a13 -g- + a^ ^) - 

-   r» «„„ +a" d„j  2ß„ r« «if,, +a« dj/2j 2ß2, 

~ ^ K ■£+fl26 S]+a^22 _ a2,y2 ~~ 
.. r13 dv„ +a!23 a<,J    2ß2, la'4 a„„ +«24 dtJ 

a'5 dv,. +025 ö^-j - 2fe r>« ä^7 + a26 -g^-j + 

(8.177) 

<h3 
'2ß 

2ß„ 
dip    | di|> 

We have obtained a nonlinear partial differential equation.    Its solution 
is sought in the form 

+ = CUV\ + C22</?2 + C^l + C44*4 + 
+ C12y,ya+CI3j/,y2+CHI/^22 + C^y^2+ 

+ Cuyi2yi2+C3iy2y2V (8.178) 

Here Cih are unknown coefficients. 

It thus remains to find all the partial derivatives -S*- from (8.178) and 

insert the results in (8.169),  (8.170), (8.171), and (8.172).    This will enable 
us to find the coefficients Cih.    From the entire set of solutions we should 
select those Cik which ensure stability of the multivariable control system. 
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Adaptive systems 224 ff Control, autonomous 5 (also see Noninteraction) 
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systems 180 - 238 coupling 56, 77, 114 
Allocation, multistage 264-265 load 122,  167 
ANDRONOV viii, 48, 139, 170, 173 multivariable, variational aspects 239 - 273 

coarseness 48, 168, 172,  201, 204 system, combined 4, 36, 123 ff (also see Systems) 
noncoarse systems 201, 223 with load rejection 142 

Automatic control, see Control continuous rolling mill 1-2, 6-12 
Autonomous control 5 (also see Noninteraction) derivation of fundamental properties 78 - 88 
Auxiliary equation 61 ff, 116, 156, 160, 203 electric power network 12 -17 

first kind 61, 210 equivalent to adaptive 233 - 238 
second kind 63, 76, 103,  159,  190, 210 multivariable,   viii, 1 (also see MCS) 
third kind 67 ordinary 41 

curve 84, 85, 86, 107 ff, 115, 137,  138 combined 41 
for multidimensional servosystem 113 petroleum mining 243 - 249 

proportional 117 
Bandwidth, positive response 82, 109, 119 rectifying column 20 ff 
BELLMAN dynamic programming method 264 single-variable 149, 162 

functional equation 267 two-variable 95 
principle of optimality 266, 269 variational aspects 239-273 

BODE 223 vector as a function of time 249 - 258 
sensitivity in single-variable systems 224-226 Controlled object, equation 90 

BOKSENBOM and HOOD, method 147 -154 variables (defined) vii, 1 
BOKSENBOM viii, 5 Controller 149 
BOLTYANSKII 214 design, analytical 259 
BROMBERG 207 equation 35, 90, 97, 150, 158, 163 

floating 42 
Canonic structures of MCS 58 gain 44 
Characteristic equation 72, 74, 78, 156,  157, ideal 147, 159 

216, 220 isochronous 159 
degenerate 172 matrix representation 150 
gain entering linearly 205 - 206 Coupling coefficients 71 ff 

nonlinearly 206 - 207 load 130 
MCS 59, 87, 127 control 114 
with small parameters 201 cross 33, 58 

plant 233 direct 33, 34, 58 
relay 213 load 38 
saturation 212 measurement devices 38, 55, 105 
search 233 natural 58 

Closed-loop system, gain-phase characteristics plant 38, 55 
79, 80 transducer 38, 55, 105 

transfer function 105, 215, 216, 217, 219, Criterion, Bellman's optimality 269 
224, 227 Routh-Hurwitz 76 

Coarseness 48, 168, 172, 204 stability 61 ff 
Combined control system 41, 123 ff Crossover frequency 81 ff, 113, 115 
Continuous rolling, control system for 1 - 2, 6 - 12 Current in a salient-pole generator 15 
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Current feedback, proportional 131 
Cutoff frequency 81 

DARCY law of filtration 31 
D-decomposition curve 79, 81 ff,  106, 108, 109, 

113 ff, 118,  137 ff, 205, 206, 207 
derivation of the gain characteristic from 80 
for the gain of a degenerate system 106 - 107 

Declining degrees of polynomials, property of 66 
Degenerate case 103 

equation 61 ff, 68, 70, 74,  104, 105, 116,  118, 
135, 136,  158,  160 ff,  172, 208, 210, 

217, 231 
first-loop 106 

system 105, 107 
three-variable 106 

vector equation 103 
Delay elements 35, 42 
Disturbance rejection 130, 161, 169, 171,  174, 175 

Disturbances 150 
in forward and feedback path 199 - 200 
load 142 
external, rejection of 143, 166, 174 

DRAPER 232 
DRUZHININ 7 
DUHAMEL integral 251 
Dynamic programming, application to the synthesis 

of MCS268-273 
properties of an isolated servosystem 113 

MCS98 
systems, structural noise rejection in 182 - 186 

Dynamics, multicoupled 105 
of combined MCS 133-139 
of control system 101-118, lo6 

Electric power system, control of 12 - 17 
Equation, amplifier 35, 90, 97 

auxiliary 61 ff, 156, 160, 203 
characteristic 57, 72, 74, 78,  156, 157, 

216, 220 
gain entering linearly 205 - 206 

nonlinearly 206-207 
with small parameters 201 

controller 35, 90, 97, 150, 158, 163 
degenerate 61 ff, 68, 70, 74, 103, 104, 105, 

116, 135,  136,  158, 160 ff,  172, 208, 

210, 217, 231 
derivation of the general MCS 89 - 101 
electric machine control 14, 16 
Euler-Lagrange260, 261 
functional 264 - 267 
lag element 163 
load-coupled system 39 
MCS 39, 59 

matrix form 37 - 42 
measuring device 35, 90, 97, 150 
multidimensional servosystem 39 
nonlinear element 209 
oil reservoir 30 

Equation, plant 90, 97, 119,  150, 158, 163 

rectifying column 27, 28 
stabilizer 211 

Error matrix 49 
generalized 53 
two-variable system 54-55 

permissible 202 ff 
Errors in MCS with basic elements 48 -56 
EULER - LAGRANGE equation 260, 261 

Extremum problems 240 

Feedback, elastic 159 
invariance via 170 -175 
local 169-170, 172 
negative 89, 188 
noise rejection 200 

noisy 199 
positive 169-170,  172 
proportional 131 

stabilization by 130 
FEL'DBAUM ix, 7, 143 
Filtration, Darcy law 31 
Fixed-structure control system with adaptive 

properties 180-238 
Floating controller 42 

systems 93 
Forward path, noisy 199-200 
FREEMAN 5 
Frequency and speed control equation 16 

crossover 81 ff, 113, 115 
cutoff 81 
response, closed-loop 86 

real 81 ff 
Function, transfer 10, 14, 57, 73, 76, 112, 

121-127, 133,  134, 141 
asymmetric 79 
closed-loop 105 
symmetric 79 

Functional equation 264 - 267 

Gain and phase margin 80 
characteristic, determination from fl-decomposition 

curve 80 
controller 44, 174 
determination of 204 - 208 
entering linearly the characteristic equation 205 -206 

nonlinearly the characteristic equation 206 - 207 
infinite 67, 69-70, 72-77,  118, 214 
nonlinear element 210 
-phase characteristic, closed-loop 79, 80 

plant 173 
stability 59-69, 73, 118 

GOLOMB 5 

HOELDER's inequality 254 ff 
integral inequality 254 

HOODviii, 5, 147-154 
HURWITZ criterion 237 

determinant 63 
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Ideal plant 195,  198, 225 Matrix, error 49 
relay 213 generalized 53 

Infinite gain, stability 69-70, 72-77, 118 of controlled variables 40 
in relays 214 representation of plant and controller 150 

Integral MCS 97 ff, 115 ff transition 251 
single-loop system 42 MCS, block-diagram 4 
subsystems 43 ff, 130 -132 combined 122 -142 
systems 93, 117 dynamics 133 -139 
variables 46 stability 132 -133 

Invariance and nonintetaction in MCS 143 -179 equation, derivation of 89-101 
simultaneous detivation 176 integral 97 ff, 115 ff 

conditions 4 invariance and noninteraction in 143 -179 
principle 166 - 175 plant-coupled, 105, 120 
via feedback 170 - 175 proportional 89 ff, 101 ff 

Irregularity coefficients 146, 147 realizability of noiseproof structures 190 -193 
Isochronous controller 159 synthesis, application of dynamic programming to 

stabilizer 159 268-273 
system 159 -161 with coupling through the measuring device 77 - 78 

infinite-gain stability 89-121 
KAVANAGH 5 Measuring device, equation 35, 90, 97, 150 
KIRILLOVA 250, 253, 257 ideal 147 
KOCHENBURGER 233 ff MEEROV 80/ 

KOKOTOVld 223 MESAROVIC 5,  147 
sensitivity 227 - 229 MIKHAILOV viii 

KRANC x, 250 MIKHNEVICH 5 
KRASOVSKII5, 48, 25-251 MOROZOVSKII 5 
KUKHTENKO 143 Multicoupled dynamics 105 
KULEBAKIN viii,  143 Multidimensional servosystem 2, 36, 41, 56, 58, 77 
KULIKOWSKI 250 Multistage allocation process 164 -165 

Multivariable control systems vii, ix, 1, 32, 184-186 
Lag element, equation 163 (also see MCS) 
Lagged plant, noninteraction in 163 canonic structures 57 - 58 

system 68 - 69 steady-state operation 42-48 
with infinite-gain stability 72 -77 with basic elements 32 - 56 

Lagless plant, noninteraction in 162 variational aspects of 239 -273 
system 60-68, 118 

with infinite gain stability 69 - 70 Noise-free elements, transfer function 182 
LAGRANGE's function 260, 261, 263 in forward and feedback paths 200 

multipliers 260 rejection 186 
LAPLACE transform 24, 27, 35, 39, 51, 77, 90, by stabilizers 195 

125 ff, 148, 155, 157, 164, 171,  185, in dynamic systems, 182 -186 
197, 221, 222, 230, 271 in feedback path 200 

LEE 232 structural 185 
LETOV 259, 263, 264 physical realizability 186 -190 
Linear programming, application of 240 - 242 Noisy elements, transfer function 183 
Linearized system 221 feedback 199 
Load control 122 plant 194 -199 

coupling coefficients 130 systems 232 
disturbances 142 Noncoarse systems 223 
rejection 139-141, 161,  169, 174, 175 Noninteraction 144 -154 

combined control system with 142 and invariance, simultaneous derivation of 176 
infinite gain 141 - 142 as a dynamic property 154- 159 
stabilizer used for 142 complete 144, 154 

Loop, aperiodic 155 conditions 151 
LUZIN 143 in lagged plant 163 -166 
LYAPUNOV 62 lagless plant 162 

the general case 161 - 163 
Margin, gain 81 perfect 144 

phase 81 Nonlinearities 209 -212 

282 



Nyquist diagram 79, 81 

Oil-field exploitation, optimal control problems 
29-31, 244-249 

Optimal policy 264 - 265 
Optimality,  Bellman's principle of 264-267, 269 

Output searching loss 233 
vector, matrix equation 102 

Overshoot 83 ff 

Parameters, small, characteristic equation with 201 
quantitative estimation of 201 - 203 

variable, in a control system 229 - 233 
Passive elements, minimum number of 121 

stabilizers 118, 225 
Petroleum mining control 29-31, 244 - 249 

PETROVviii, 143 
Phase angle equations 14 

margin 80, 81 
Plant and controller, matrix representation of 150 

characteristic 233 
coupling 55, 105, 120 

cross 33 
direct 33, 34 

equation 97, 119, 150, 158, 163 
ideal 195, 198, 225 
noisy 194 -199 
noninteracting, lagged 163 
lagless 162 
transfer function 227, 235 
variable parameters 230, 232 

Policy, optimal 264 - 265 
Polynomials, property of declining degrees 66 
PONCELET principle 36,  167 
PONTRYAGIN 214 
POPOV'S method 212, 231, 237 
Principle of control by deviation 122 

load control 122 
optimality 266, 269 

Poncelet 36, 167 
Watt —Polzunov 4, 36, 122, 167,  171, 173 

Programming, dynamic 264 
application to MCS synthesis 268 - 273 

linear 240 - 242 
Proportional control 101, 117 

feedback 131 
MCS 89 ff, 101 ff 
subsystems 45, 47-48, 93, 127-130 

systems 93 
single-loop 42 

variables 46 

Rectification, functional diagram 18 
Rectifying column 17 - 29 

binary 19, 20 ff 
diagram 22 
equations 23 ff 
separation of multicomponent mixtures 19 - 20 
vacuum distillation 21 

Rejection, disturbance   130, 143, 161, 166, 174 

conditions 169, 174, 175 
derivation of 171 

load 139 -142 
noise 180-186 

application of stabilizers to 195 
in the feedback path 200 
physical realizability 186 -190 
structure ensuring stability and 188 

Relay characteristics 213 
ideal 213 
infinite gain 214 
systems 212-222 

stability 213 - 222 
with insensitive zone 213 

Response, real frequency 81 ff 
Rolling mill, continuous, strip gage control in 

1, 2, 6-12 
ROUTH— HURWITZ criterion 76 
ROZONOER 143 

SARACHIK ix, 5, 250 
Saturation characteristic 212 
Search characteristic 233 

periodic 233 
Searching loss, output 233 

region 233 
systems 233 

Self-adjusting systems 193 -194, 224 ff 
synthesis of equivalent fixed-structure 

systems 180-238 
Sensitivity 223 - 229 

Bode 224-226 
Kokotovic 227 - 229 
zero 223 

Servosystem, auxiliary curve 114 
dynamics 113 
multidimensional 2, 3, 36, 41, 56, 58, 77, 96, 

113, 114, 150,  158 
SHCHIPANOV 143, 168 
SILIMZHANOV ix 
Simplex method 247 
Single-loop system, integral 42 

proportional 42 
Single-variable control system 118, 149, 162, 

182 -184 
Bode sensitivity 224 - 226 

subsystems 175, 192 
Sliding action conditions 220 - 222 
Stability 61 ff 

and noise rejection, structure ensuring 188 

aperiodic 64 
conditions 187, 190 
criteria 61 ff 
infinite-gain 69-70, 118, 166 
of combined MCS 132 -133 

MCS, effect of subsystem gain on 59-69 
relay systems 213-220 
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Stability requirements 103' 
Stabilization by proportional feedback 130 
Stabilized elements, gains of 73 
Stabilizer 71, 122, 129 

equation 211 
isochronous 159 
load rejection 142 
mixed-type 130 
noise rejection 195 
operator 71 
passive 118, 225 
real 193 
structures with several 118 - 121 
real, structure with 205 

transfer function 76, 77, 161, 162 
Steady-state operation 42-48, 127 - 132 
Structural noise rejection 185 

in dynamic systems 182 -186 
physical realizability 186 -190 

Structure, canonic 58 
choice of 34 ff, 122 
infinite-gain stability 69 -70 
MCS57-88 
noiseproof 190 -193 
proportional-control 101 
stability and noise rejection 188 
with stabilizers 118-121, 205 

Subsystem gain, effect on stability 56 -69 
increase 67, 96 

integral 43 ff, 130 -132 
multiloop 119, 174 
proportional 45, 47-48, 93, 127-130 
single-loop 59 
single-variable 175 
with stabilizer 70, 73 

Synthesis of fixed-structure systems equivalent 
to adaptive systems 180-238 

of MCS, application of dynamic programming 
to 268-273 

System, adaptive 224 ff (also see Subsystem) 
Bode sensitivity 224 - 226 
control-coupled 77 
disturbance rejection 166 
dynamics 101 -118 
equivalent to adaptive synthesis of 180 - 238 
fixed-structure 180-238 
floating 93 
integral 93 -117 
isochronous 159 -161 
Kochenburger's 234 ff 
lagged 68 - 69 
lagless 60 - 68 
linearized 221 
multicomponent, general case 182 
noise rejection 182 -186 

physical realizability 186 -190 
noisy 232 
noncoarse 223 

System, noninteracting 51 
proportional 117 
relay 212-222 
single-variable 118, 149, 162 

Bode sensitivity 224-226 
structural noise rejection 182 - 190 
synthesis 180-238 
three-variable 99, 100, 167 - 169 
transfer function 236 
two-variable 95, 107, 117 
variable-structure 212 
zero sensitivity 223 

Three-dimensional servosystem 96 
Three-variable system 99, 100, 167-169 

degenerate 106 
plant- and transducer coupled 104 

Time lag 69 
Transducer coupling 55, 105 

ideal 145, 147 
output 123,  140 
ratio 140, 141, 195 

Transfer function 10,  14, 57, 73, 76, 112, 121-127, 
133, 134, 140, 141,  153, 154, 161,  176, 183, 
188,  193 ff, 210, 215, 218, 220, 231, 236 

asymmetric 79 
closed-loop 105, 215, 216, 217, 219, 224, 227 
controlled object 227, 233, 235 
MCS 34-37   . 
noisefree elements 183 
noisy elements 183 
noninteracting system 51 
plant 227, 235 
single-variable system 195 
symmetric 79 

Transforms, see Laplace transform 
Transient behavior of a system 218 

component, free 207 
Transition matrix 251 

TRUXAL 223 
TSUKERNIK 5 
TSYPKIN 207, 213 
Two-dimensional servosystem 114 
Two-variable control system 95 

dynamic properties 107 
integral 117 

USDIN 5 

Variable parameters in control systems 229 - 233 
Variable-structure systems 212 
Variables, controlled vii 

integral 46 
proportional 46 

Variational aspects of multivariable control 239 - 273 
calculus, application of 258 - 263 

Vector equation, degenerate 103 
VENKOV 5 
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VOZNESENSKII ix, 5,  144-147, 149,  154,  155 WATT —POLZUNOV principle 4, 36. 122, 167, 171, 173 

WARD—LEONARD d. c. engine 8, 11 Zero-sensitivity systems 223, 228 
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